UNIVERSIDAD SAN PEDRO

FACULTAD DE INGENIERÍA

PROGRAMA DE ESTUDIOS DE INGENIERÍA CIVIL

Evaluación del pavimento asfaltico mediante los métodos PCI Y VIZIR de la ruta nacional PE 3N del kilómetro 574+00 al 577+00, de la ciudad de Huaraz 2020

Tesis para obtener el título profesional de Ingeniero Civil

Autor:

Carrillo Camones, Henry Romel

Asesor:

Salazar Sánchez, Dante Orlando

Huaraz – Perú 2020

Palabras clave

Tema	Evaluación, Pavimento Asfaltico, VIZIR, PCI.
Especialidad	Pavimento flexible

Keywords

Subject	Evaluation, Pavement Asphaltic, VIZIR, PCI.
Specialty	Flexible Pavement

Línea de investigación	Transporte
Área	Ingeniería y tecnología
Subárea	Ingeniería Civil
Disciplina	Ingeniería Civil

Título de la investigación

Evaluación del pavimento asfaltico mediante los métodos PCI Y VIZIR de la ruta nacional PE 3N del kilómetro 574+00 al 577+00, de la ciudad de Huaraz 2020

Resumen

El presente trabajo de investigación tuvo como objetivo general determinar el estado de condiciones del pavimento y el índice superficial de deterioro en toda la ruta nacional PE 3N del kilómetro 574+00 al 577+00, de la ciudad de Huaraz. El objetivo fue evaluar el estado del pavimento asfáltico aplicando las metodologías PCI, VIZIR y el porcentaje y granulometría a través del lavado asfaltico, el presente trabajo tuvo como población a los tramos de pavimento asfaltico ubicados en la regresiva 3+00 km de la vía de la prolongación de Huaraz, las técnicas utilizadas para la ejecución del proyecto fueron la observación directa y el diagnóstico de la zona, asimismo, se utilizó los instrumentos del formato de la metodología PCI y VIZIR. El tipo de estudio fue aplicado, con diseño de investigación descriptivo, comparativo. Los principales resultados obtenidos de las muestras analizadas (75) fueron muestras por el método PCI y para el método VIZIR se utilizaron 30 muestras y 2 muestras de laboratorio de lavado asfaltico, se encontró que la vía de pavimento flexible evidencio que estuvo en estado buena con un valor de 62.19 según el PCI en estado regular con un valor de Índice de Deterioro Superficial (Is) de 3.63 para VIZIR y en gradación óptimo de 5.50% de lavado asfaltico. Llegando a la conclusión que al evaluar los dos métodos de inspección visual del estado del pavimento asfaltico, se tuvo un estado bueno con el método PCI y con una gradación optima con el método VIZIR.

Abstract

The general objective of this research work was to determine the state of the pavement conditions and the index of surface deterioration in all the national rota 3N of kilometer 574 + 00 au 577 + 00, city of Huaraz. The objective was to assess the state of the asphalt pavement by applying the PCI, VIZIR and percentual methodologies and granulometry through the asphalt lavage, or present work as a population of the stretches of asphalt pavement located at 3 + 00 km regressive from Rodovia. In extension of Huaraz, as techniques used for a project execution for a direct observation and or diagnosis of the area, in the same way, for the instruments used in the PCI and the VIZIR methodology format. Application or type of study, as a descriptive and comparative research. The main results obtained in the samples analyzed (75) were shown by the PCI method and for the VIZIR method, using 30 samples and 2 samples of the asphalt lavagem lab, it was verified that the asphalt pavement of the road appeared that it was in good condition. A value of 62.19 in accordance with PCI in reasonable conditions with a value of the Surface Deterioration Index (Is) of 3.63 for VIZIR and an optimal grade of 5.50% of asphalt lavagem. Checking for the conclusion that to validate the two methods of visual inspection of the state of the asphalt pavement, the state is obtained as the PCI method and the best gradation as the VIZIR method.

Índice

Palabras clave	ii
Título de la investigación	iii
Resumen	iv
Abstract	V
Índice	Vi
Índice de tablas	vii
Índice de figuras	ix
I. INTRODUCCIÓN	1
II. METODOLOGÍA	22
III. RESULTADOS	25
IV. ANÁLISIS Y DISCUSIÓN	55
V. CONCLUSIONES	58
VI. RECOMENDACIONES	60
VII.REFERENCIAS BIBLIOGRÁFICAS	61
VIII. ANEXOS Y APÉNDICE	67

Índice de tablas

Tabla 1 Técnicas e instrumentos de investigación	23
Tabla 2 Conceptuación y operacionalización de las variables	24
Tabla 3. Especificaciones del tramo de carretera	25
Tabla 4. Cálculo de la severidad del PCI	27
Tabla 5. Determinación de Valores Deducidos Individuales	27
Tabla 6. Cálculo de valores deducidos corregidos	28
Tabla 7. Porcentaje de daños que afectan a la calzada derecha por PCI	29
Tabla 8. Porcentaje de daños que afectan a la calzada derecha por PCI	31
Tabla 9.Especificaciones del tramo de carretera	32
Tabla 10.Calculo de la densidad de fallas	33
Tabla 11.Valores de índices de fisuración.	34
Tabla 12.Valores de índices de Deformación	34
Tabla 13.Cálculo del Índice de fisuramientos (If) y Índice de Deformación (Id)	. 35
Tabla 14.Valores de índice, de fisuración y deformación	35
Tabla 15.Cálculo del Índice de Deterioro Superficial inicial (Iso)	36
Tabla 16.Cálculo del Índice de Deterioro Superficial inicial (Iso)	36
Tabla 17. Cálculo de corrección Índice de Corrección (Ir)	37
Tabla 18.Resultado final del Método VIZIR	38
Tabla 19. Porcentaje del daño tipo A que afecta a la calzada por VIZIR	39
Tabla 20.Porcentaje del daño tipo B que afecta a la calzada por VIZIR	40
Tabla 21.Resumen de los daños de tipo A y tipo B por VIZIR	41
Tabla 22. Frecuencia de las categorías del método VIZIR	41
Tabla 23.Resumen comparativo por ambos métodos	43
Tabla 24.Resumen comparativo según métodos PCI y VIZIR	46
Tabla 25.Porcentajes equivalentes para cada muestra	47
Tabla 26.Porcentaies equivalentes para cada muestra	. 47

Tabla 27. Análisis comparativo con los Métodos PCI y VIZIR	48
Tabla 28.Determinación del Índice de Condiciones del Pavimento (PCI)	y Índice
de Deterioro Superficial (Is) aplicando los Métodos PCI y VIZIR	49
Tabla 29.Resultado del porcentaje y agregado del pavimento flexible	49
Tabla 30.Porcentaje de área afectada de la calzada por el método PCI	50
Tabla 31.Porcentaje de área afectada de ambas calzadas por el método	VIZIR . 52
Tabla 32Propuesta de solución	54

Índice de figuras

Figura 1. Área afectada por tipo de daño, de acuerdo al método PCI	30
Figura 2. Porcentaje del Estado de la Carpeta Asfaltico Método PCI	31
Figura 3. Área afectada por tipo de daño A	39
Figura 4. Porcentaje de daños de tipo estructural del Área afectada por daño de t	ipo B.
	40
Figura 5. Porcentaje del Estado del pavimento método VIZIR	42
Figura 6. Resultado de la comparación entre el método PCI y VIZIR	48

I. INTRODUCCIÓN

En la actualidad al referirnos a pavimentos es tener presente la problemática que se vive a nivel mundial, en el cual la mayoría de los países en aras de desarrollo presentan pavimentos en pésimas condiciones, en lo cual, el problema más serio que se puede identificar son las fallas superficiales del pavimento ya sea rígido, flexible o mixto, esto se puede evitar con los mantenimientos programados o periódicos que se debe tener presente al momento de la construcción, pero este problema se complica con la falta de programación de tales mantenimientos por falta de estudios que presenten una recomendación técnica para mantener dicha vía, es por ello que muchas veces los pavimentos instalados no cumplen con el tiempo para el cual ha sido diseñado y con ello se crea malestar en las pobladores que deben pagar las consecuencias de una mala gestión en la construcción de los pavimentos. Es por ello que es necesario utilizar las técnicas de análisis de construcción y estudios detallados de los pavimentos flexibles en todo el territorio.

En el estudio detallado de pavimentos flexibles se analizan las fallas superficiales y fallas estructurales, para ello existen métodos estandarizados que son importantes para la programación del mantenimiento y conservación del pavimento asfáltico. Este tipo de investigaciones es importante porque presenta resultados amplios de estudio y evaluación de las fallas superficiales y fallas estructurales, en ese sentido, las entidades públicas y privadas tendrán un sustento técnico ingenieril para la toma de decisiones respecto al mantenimiento preventivo y programado, reduciendo así los costos de operación pues se aumenta la transitabilidad del pavimento flexible, también es un ahorro económico para el parque automotor que transitan por dicha zona, pues reducen el tiempo de transporte y mantienen las condiciones de las unidades de carga, así como la reducción de los accidentes a causa de las fallas superficiales y estructurales del pavimento flexible. Es por ello la importancia del desarrollo del presente trabajo de investigación.

Para ello se estudió a varios investigadores en el ámbito internacional tales como: el investigador Baque (2020), en su trabajo de investigación titulado Evaluación del estado del pavimento flexible mediante el método PCI de la carretera puerto aeropuerto (Tramo II), Manta. Provincia de Manabí, en dicho artículo científico el autor tuvo por objetivo general la determinación y diagnóstico da las causas que inciden negativamente en las condiciones de la operatividad de la mencionada carretera, para ello utilizo la metodología, con un diseño no experimental, del tipo descriptiva, la población consto de 3600 metros de largo y 17,50 metros de ancho, ubicada entre el parque del Marisco y el Aeropuerto y la técnica que utilizo para la recolección de datos fue la observación con el apoyo del formato del método PCI. Los resultados obtenidos fueron regular con un puntaje de 49 para el pavimento rígido, además determino 12 tipos diferentes de fallas en las 26 analizadas. De lo cual llego a la conclusión que entro de las principales patologías que deterioran el pavimento son desprendimiento de agregados, piel de cocodrilo, agregados pulidos, grietas de bloque y otras fallas con un porcentaje de 78,28%, 4,51%, 4,11%, 3.96% y 9,14% respectivamente y por ello se necesita realizar un mantenimiento.

Según Salazar (2019), en su trabajo de investigación titulado *Evaluación* superficial del pavimento flexible utilizando el método PCI contrastado con la guía PMBOK en la Avenida Independencia, Cajamarca 2017, en dicho trabajo de investigación el autor tuvo por objetivo general determinar la evaluación de las características del estado del pavimento flexible en la citada vía, la metodología que utilizo fue un diseño no experimental, descriptiva, la cual lo complemento con el método PCI, además para ello utilizo 75 unidades de muestreo, entre los resultados obtuvo que las fallas que más frecuencia presentan y que inciden en el estado del pavimento flexible de la Avenida Independencia, la calificación del pavimento es regular, con un promedio de PCI 49,09%, para el mejoramiento de la vía se necesita un presupuesto aproximado de S/. 176,076.41, llegando a la conclusión que las principales fallas que presenta el

pavimento flexible tiene incidencia con severidad baja y media, lo cual sirve para el mantenimiento del pavimento flexible de la Avenida Independencia, Cajamarca.

Tineo (2019) en su tesis de investigación titulado Evaluación del estado del pavimento asfáltico aplicando los métodos PCI y VIZIR para proponer alternativas de mantenimiento - Av. Canto Grande, en dicho trabajo se planteó determinar y evaluar el estado y condiciones del pavimento asfáltico de la Av. Canto Grande aplicando los métodos PCI y VIZIR, para realizar alternativas de mantenimiento para alargar la vida de operacionalidad del citado pavimento, para ello utilizó una metodología con un tipo de investigación aplicada y un diseño de investigación no experimental enfoque cuantitativo, la población que estudio fueron las vías colectoras del distrito de san Juan de Lurigancho, para ello lo secciono en 142 tramos de 35 metros cada uno, analizando las fallas en las calzadas derecha e izquierda, con lo cual obtuvo como resultado que las distintas metodologías con un índice de 39,40 para el PCI y para el deterioro superficial una puntuación promedio de 3 para VIZIR y para la calzada derecha obtuvo un índice promedio de 46,90 para el PCI y un deterioro superficial con una puntuación de 3 para VIZIR, llegando a la conclusión las metodologías como el PCI y VIZIR son significantes para la evaluación de los pavimentos asfálticos de distintos tramos de carreteras.

Según Vásquez (2018), en su trabajo de investigación titulada Evaluación del estado de conservación de las calles del sector Santa Rosa de la ciudad de Bambamarca utilizando los métodos de índice de conservación del pavimento (PCI) y VIZIR, en dicho trabajo de investigación el autor tuvo por objetivo general evaluar la condición de las calles del sector Santa Rosa de la ciudad de Bambamarca para lo cual utilizo el método de Índice de Condición del Pavimento (PCI), la metodología que empleo fue un diseño no experimental y de tipo descriptiva además de seguir la metodología del método PCI, todo esto lo realizo utilizando formatos y visitas visuales, la población lo delimito del sector Santa Rosa de la ciudad de Bambamarca y la muestra lo tomo como 12 jirones de

las cuales obtuvo 39 muestras, el resultado que obtuvo fue que principales patologías fueron parcheo grande, pulimiento de agregados, grieta lineal, descascaramiento de junta, otros, los cuales tuvieron un porcentaje de 42,30%, 12,70%, 11,90%, 7,00% y 13,30% respectivamente. Llegando a la conclusión que estado del pavimento es regular con un valor PCI de 43,92.

Rivas y Sierra (2016) en su trabajo de investigación titulado *Aplicación y comparación de las diferentes metodologías de diagnóstico para la conservación y mantenimiento del tramo PR 00+000 – PR 01+020 de la vía al Llano (DG 78 Bis Sur – Calle 84 Sur) en la UPZ Yomasa,* los investigadores se plantearon como objetivo general aplicar las metodologías VIZIR (Francesa) y PCI (Americana) para determinar las fallas presentes en el pavimento asfaltico, utilizando para ello una metodología con un tipo de investigación aplicada y un diseño de investigación no experimental, descriptivo cuantitativo con corte transversal, para ello también realizaron los estudios de la inspección de todas las fallas en el mencionado tramo de pavimento y obtuvieron como resultado que el PCI tuvo una calificación promedio para el tramo de 89,00 y con la metodología VIZIR tuvo una calificación promedio de 2, con lo cual llegaron a la conclusión que es factible aplicar las metodologías PCI y VIZIR, obteniendo un estado del pavimento asfaltico de excelente y bueno respectivamente.

Y por último según Rodríguez (2015), en su trabajo de investigación titulado Evaluación de la condición operacional del pavimento rígido, aplicando el método del pavement condition index (PCI), en las pistas del barrio el Triunfo, distrito de Carhuaz, provincia de Carhuaz, Región Ancash, el investigador en dicho trabajo de investigación tuvo por propósito principal evaluar y determinar las condiciones de operación del pavimento rígido ubicado en las avenidas del barrio El Triunfo, en Ancash, para ello el autor utilizó la metodología que utilizo fue no experimental, descriptiva, para ello realizo inspecciones al pavimento rígido de donde pudo recolectar los datos, los resultados de

dicha investigación indican que se logró el identificar las principales patologías del pavimento rígido y con ello pudo calcular el valor del índice PCI, esto lo hizo considerando los diagramas estandarizados, los ábacos para cada tipo de falla presente en el citado pavimento, llegando a obtener un índice PCI =45,20 de una calificación sobre un valor de 100, lo cual indico que el pavimento presenta una calificación Regular, de lo que concluyó que el pavimento rígido de El Triunfo debe dársele mantenimiento para una mejor transitabilidad y que el parque automotor sufra daños severos, además de disminuir los tiempos de transporte.

Para ello se debe estudiar las diferentes teorías o **fundamentación científica** del trabajo, entre los cuales tenemos a Montejo (2002), quien definió a los **pavimentos** como el conjunto de capas que se sobreponen de forma relativamente horizontales, los cuales deben realizarse con diseños técnicos y de ingeniería, utilizando para ello materiales apropiados que deben estar adecuadamente compactados los cuales deben estar apoyados sobre la subrasante de la vía, también según el MEF (2015) afirmo que el pavimento es una estructura que es construida con elementos característicos como la subrasante, por una capa de rodadura, por una fuerte base y subbase, estos elementos que componen el pavimento deben soportar los esfuerzos generados u ocasionados el parque automotor, además deben presentar condiciones para soportar las diferentes condiciones climáticas, como el cambio brusco de temperatura, entre otros y por último según

Según Montejo (2002) afirmo que, los **pavimentos se clasifican** en pavimentos flexibles, los cuales están constituidos por una carpeta bituminosa, material granular y un ligante asfaltico, estos elementos son apoyados son dos capas que se les conoce como base y subbase, los pavimentos semirrígidos, son los pavimentos en el cual una capa ha sido rigidizado con otros elementos tales como asfalto, cal, cemento, entre otros, los

pavimentos rígidos, los cuales están constituidos principalmente por una losa compuesta de concreto hidráulico, la cual está sobre la subrasante o sobre la subbase de pavimento rígido su principal característica es que presentan alta rigidez y un alto coeficiente de elasticidad y los esfuerzos a la tensión se distribuyen en una área amplia y por último los pavimentos articulados, los cuales lo conforma una capa de rodadura, la cual está constituida principalmente con bloques que están hechos a base de concreto prefabricado, que se conocen generalmente como "adoquines", cuyas dimensiones son homogéneas es decir iguales entre sí, estos elementos estructurales deben estar asentados sobre arena y de base granular o a veces directamente sobre la subrasante.

Morales (2005) afirmo que el pavimento flexible está formada por un espesor de capa asfáltica característica cuyo asentamiento se da en la subbase y base de la estructura, los cuales deben soportar la distribución de cargas causadas por el parque automotor entre otras, esta distribución de esfuerzos se deben dar en toda la capa superficial y su distribución debe ser uniforme para amortiguar las cargar y disipar las tensiones que se ejercen en el pavimento. En ese mismo sentido según Morales, Chávez y López (2009), afirman que los **elementos del pavimento flexible** son variados, pero entre los más representativos se tiene a una capa de rodamiento bituminosa, es la parte fundamental del pavimento flexible que además presenta la subbase y la base correspondiente, para la construcción y elaboración de la capa de rodamiento bituminosa se presenta a través de los tratamientos asfalticos superficiales, también las mezclas asfalticos a bajas temperaturas o en frio y por último la mezcla asfáltica en caliente, estos elementos son característicos de los pavimentos flexibles e influyen en su tiempo de duración y además de los mantenimientos programados que se debe realizar a través del tiempo.

Montejo (2002), afirmo que los pavimentos deben tener la característica de ofrecer resistencia a las cargas que se dan a través del tráfico vehicular, ya sea intenso o moderado, además de ser tolerante a los cambios de temperatura, la capa de rodadura debe presentar resistencia a las tracciones de velocidades generadas por el parque automotor de distinta categoría de rodaje, además debe tener la superficie de rodadura con una regularidad superficial con corte mixto ya sea transversal como longitudinal, y por último debe presentar regularidades para las condiciones climatológicas y tener una vida útil que sea sostenible en el tiempo, económicamente factible y que presente seguridad vial a los conductores. Además también deben presentar un comportamiento que responda a las propiedades mecánicas y los aspectos más fundamentales que contribuyen al mantenimiento de los pavimentos flexibles.

Además Montejo (2002) afirmo que en los pavimentos flexibles presentan distintas capas en las cuales se tiene: la sub – rasante es por lo general el terreno natural que se apoya o descansa la estructura principal del pavimento flexible, las subrasante deben ser estudiadas sus propiedades por distintos ensayos, teniendo al CBR entre el ensayo más utilizado; las capas de relleno que se realizan modificaciones primarias o mínimas que sirve para ayudar a mejorar las condiciones y propiedades de la subrasante que se presenta en un pavimento asfaltico, representando ello un bajo costo para el acondicionamiento del terreno para la construcción del pavimento flexible; también se tiene a la capa subbase, la capa base y la capa de rodamiento que son necesarias para tener una correcta carpeta asfáltica. Además Armijos (2009) hace referencia a la serviciabilidad de los pavimentos, la cual es analizada en su mayoría por los usuarios de dicho pavimento, es por ello que la evaluación debe realizarse de forma superficial y con ello no se realiza una evaluación integral del pavimento y con ello se utiliza diferentes pruebas de ensayos propuestas por AASHTO, realizando para ello una cuantificación desde un puntaje mínimo y deficiente de 0 hasta un máximo o perfecto valor de 5.

Además según Valeriano (2000), afirma que existen una diversidad de factores que ocasionan deterioros paulatinos de los distintos pavimentos, dentro de los cuales se tiene al tipo de transito que circula y la frecuencia, este tipo de transporte puede ser pesado o liviano, y aumenta el deterioro con los tipos de neumáticos y las condiciones ambientales en donde está ubicada el pavimento flexible, se tiene también a la hora de la construcción los materiales de calidad y el metrado correcto para la ejecución de la construcción de los pavimentos, ello influye en el deterioro de los pavimentos, es por ello que se debe tener toda la programación y presupuesto para contrarrestar las condiciones de materiales para mitigar los efectos negativos del medio ambiente en donde se construye el pavimento flexible, también se tiene a factores que se dan aleatoriamente y no pueden ser manejados como los distintos tipos de aniegos, desperdicios orgánicos, y por último en el proceso de durabilidad del pavimento se tiene al tipo de mantenimiento que se debe realizar al pavimento, en donde involucra el tiempo de mantenimiento, el tipo de mantenimiento, en donde se identifica las distintas fallas que se dan en el pavimento y la severidad con la que se presentan.

Meléndez (2016) afirma que para una mejor conservación e intervención del pavimento es fundamental para alargar la durabilidad de dicha estructura es por ello que se debe realizar una optimización detallada de todos los factores que intervienen en el deterioro del pavimento, dentro de estos aspectos se debe tener presente la ubicación y la referenciación, este factor es importante pues de allí se toma los datos que serán analizados para la toma de decisiones en el cual se tiene presente el sistema referencial de los pavimentos, también se tiene presente a todos los documentos que son oficiales para la recopilación de datos de la carretera, y por último se tiene a la ubicación estratégica de los servicios, obras de arte, entre otros; con la ubicación de los servicios se realiza la complementación de la vía con el análisis de dichas obras adicionales que se realizaran en el pavimento y la fundamentación que ello involucra para evitar complicaciones al momento del mantenimiento que se le dé a las distintas obras que

están inmersas en el pavimento flexible, y con ello se debe tener especial cuidado en el análisis de las redes de alcantarillado, infiltraciones, drenes subterráneos, inadecuada o deficiente compactación de las distintas zanjas que se llevan a cabo para la operatividad de las distintas obras en conjunto con el pavimento asfáltico.

Según Dávila, Huangal y Salazar (2017), afirmaron que es imprescindible conocer los tipos de evaluación de pavimentos, los cuales son importantes para la evaluar los distintos tipos de pavimentos, que identifican las distintas patologías con el propósito de proponer mejoras técnicas para el mantenimiento, reparación o cambio de los distintos pavimentos dependiendo de la severidad de la falla, la evaluación se basa principalmente en tres aspectos que se relacionan íntimamente y es la evaluación funcional, que consiste en las inspecciones superficiales que se realizan directamente al pavimento con el objetivo de determinar las fallas que afectan al conductor, como la comodidad de la rodadura o los costos que se incurre en ello, entre los principales indicadores de la evaluación del estado superficial del pavimento tenemos a la serviciabilidad presente y al índice de regularidad internacional; la evaluación de la capacidad estructural, el cual se enfoca directamente en los tramos de pavimento que ha perdido la capacidad de soportar carga para lo que ha sido diseñado, para ello se pueden realizar ensayos destructivos y no destructivos, y completando la trilogía la técnica observacional a través de una inspección visual.

También dichos autores afirmaron que dentro de los principales métodos de inspección visual se tiene al índice de condición del pavimento (PCI, por sus siglas en ingles), que consiste en determinar todas las fallas de forma superficial del pavimento rígido, el método VIZIR o método desarrollado por el labortatorie central des Ponts et Chaussés, con el cual se puede evaluar las condiciones de los pavimentos flexibles, encontramos también a la evaluación y calificación superficial del pavimento (PASER,

por sus siglas en ingles), el consorcio de rehabilitación vial (CONREVIAL), entre otros métodos, los cuales son métodos sencillos que se pueden aplicar en cualquier tipo de vía que sea pavimentada, que no se requiere equipos sofisticados como los de Diamantina, u otros, es ir directamente al pavimento y realizar una inspección visual, que por lo general consiste en dos etapas bien definidas, una inicial de diagnóstico y otro con detalle de todos los aspectos que consiste en caminar sobre el pavimento para identificar in situ todas las fallas o patologías que se presentan en la vía pavimentada, entre las principales fallas se puede clasificar de acuerdo a la severidad y a su peligrosidad de la patología.

En ese mismo sentido también Armijos (2009), afirmo que existen distintos tipos de evaluación de pavimentos, tales como: el VIZIR, el cual es un indicador que se utiliza en países en vías de desarrollo para evaluar los pavimentos de una forma simple que diferencia claramente los tipos de fallas las cuales los clasifica en fallas estructurales y funcionales, este índice además indica la degradación o deterioro del pavimento de forma superficial y susceptible a los sentidos, al ser de fácil aplicación es muy utilizado en países con climas tropicales y de temperaturas cambiantes; con este método se logra diferenciar las falencias que tiene el pavimento desde una perspectiva estructural y funcional, con ello se puede realizar un mantenimiento adecuado al pavimento con la finalidad de aumentar la durabilidad y uso del pavimento rígido construido, otro tipo de evaluación es el FHWA/OH99/004, el cual es un índice que clasifica las fallas del pavimento y realiza una ponderación de acuerdo a la falla que se presenta con mayor frecuencia debido a climas muy definidos a excepción de áreas que presenten climas tropicales y el método ASTM D 6433 - 99, es conocido también como índice de condición del pavimento (PCI por sus siglas en ingles), este índice es de utilidad pues presenta las patologías superficiales que tienen los pavimentos ya sean flexibles, rígidos, mixtos o estructurados.

De los métodos anteriores tenemos a las metodologías usadas en el presente trabajo, el cual es el método PCI para pavimentos asfálticos, el cual fue desarrollado y aplicado inicialmente en los trabajos del escuadrón o grupo de ingeniería que pertenecen a la fuerza aérea de los Estados Unidos, el cual fue utilizado por diferentes ingenieros hasta nuestros días, y en la actualidad es considerado como la inspección más detallada para la evaluación de los distintos pavimentos rígidos, debido a que es un método que se puede realizar de forma visual sin la necesidad de equipos sofisticados, y permite determinar el deterioro del pavimento rígido, a través de la práctica estándar y parametrizada para la inspección visual de los diferentes pavimentos en carreteras y también en algunos estacionamientos. En ese sentido se puede considerar al método PCI como el más extenso y completo para el estudio detallado de los pavimentos rígidos y flexibles, de lo que se considera solamente las patologías que causan deterioro de los pavimentos en función de la clase de la falla, la severidad con la que se presenta y la densidad o frecuencia de las distintas fallas.

Según Vásquez (2002), afirmo que el método PCI es un índice que indica a través de una escala la calificación de un tipo de pavimento, en el cual es el pavimento rígido, en el cual tiene un intervalo de aplicación el cual va desde un puntaje de 0 hasta un máximo de 100, siendo ese rango de trabajo que se da en una escala cualitativa, de esta escala de trabajo se puede tener una calificación de bueno, satisfactorio, regular, malo, muy malo, grave y por último la calificación de colapsado, los cuales también pueden representarse en colores característicos que van desde un gris hasta un verde oscuro para el pavimento colapsado y bueno respectivamente, es por ello que este método es de uso comercial y de fácil aplicación en cualquier pavimento de alto tránsito y bajo tránsito, así mismo su costo de evaluación es bajo y las conclusiones a las que se llega son bastantes utilizadas a la hora de tomar una decisión del tipo de intervención o mantenimiento que se le dará al pavimento que se le aplico el método pavement condition index o comúnmente llamado índice de condición del pavimento o PCI.

También Armijos (2009), definió a la **evaluación de pavimentos**, como el conjunto de etapas que se realizan en el pavimento y esto es plasmado y explicado en un informe técnico que se realiza después de la inspección visual del tramo de la carretera que se va a analizar, con el objetivo de alargar su vida de uso con una intervención oportuna para el mantenimiento o reemplazo total del pavimento y así disminuir el tiempo de transporte, el desgaste del parque automotor, evitar accidentes, entre otros problemas debido al mal estado del pavimento; es por ello que esta inspección y su informe técnico deben ser los más reales posibles y analizados de una manera objetiva y cuantitativa, de allí la necesidad de utilizar métodos y técnicas que analicen y plasmen de forma objetiva y veraz las condiciones del tramo de pavimento en estudio, pues la decisión que se tome involucra costos de operación y mantenimiento que en muchas ocasiones se recauda de los impuestos de los pobladores y por ello se merecen condiciones de los pavimentos de acuerdo a las necesidades de la población de impacto, evitando así costos excesivos en la construcción, operación y mantenimiento del pavimento.

Según Vásquez (2002) afirmo que el método de evaluación de la condición del pavimento o PCI es en la actualidad uno de los métodos de inspección de pavimentos más difundidos y utilizados, pues se centra principalmente en evaluar in situ a través de la inspección visual las diferentes patologías que están normalizadas en el método PCI, es por ello que no se requiere de un alto presupuesto, ni de técnicas experimentales para que se determinen las distintas patologías encontradas en el pavimento y que están enmarcadas en el manual PCI, y además solo basta con determinar o encontrar visualmente la patología o falla presente en un determinado número de losas de un pavimento rígido y con ello determinar la severidad y la frecuencia que se presenta en un determinado tramo del pavimento, con ello se realiza los cálculos pertinentes como los valores deducidos que fueron incluidos en el modelo por la excesiva cantidad de fallas, su respectiva severidad, entre otros, así mismo no hay necesidad de ensayos

destructivos lo que le permite a este método ser de fácil aplicación y a bajos costos, permitiendo que los países en vías de desarrollo lo usen con mucha frecuencia en sus distintos pavimentos que tienen en su territorio.

Estos métodos evalúan las fallas y deterioros que se presentan en el pavimento asfáltico tales como lo indica Meléndez (2016) donde menciona a la deformación, que se da a través de los problemas de ahuellamientos, distintos tipos de abultamientos, ciertas depresiones y en algunos casos desplazamientos uy hundimientos; en las fallas de agrietamientos se tiene a los problemas inspeccionados como la piel de cocodrilo, las fisuras longitudinales presentes en el pavimento flexible, también se tiene presente las fisuras transversales, en bloque y en diagonal, también para los defectos o desperfectos de superficie, se presentan problemas o fallas como el descascaramiento, presentando también pulimiento de agregados, así como la pérdida significativa de agregados, encontrando también huecos, baches y parche y por último loa defectos del borde del pavimento asfáltico se presentan problemas como la rotura de borde, deflexión o escalonamiento entre la berma y la calzada presente en el pavimento asfáltico y además se presenta la falla de segregación que se da en casi el 90% de los pavimentos asfálticos en los que no se ha realizado adecuadamente el mantenimiento o no se ha tenido en cuenta las características de construcción.

Por otro lado según Vásquez (2002) afirmo que los daños, fallas o patologías que se encuentran presentes en un pavimento rígido está enmarcado principalmente a 19 fallas, de las cuales hace referencia a: **Piel de cocodrilo**, estos daños se dan a casusa de una serie y conjunto de grietas que se extienden en diferentes direcciones y sin ningún patrón, pero están interconectadas en su conjunto, la cual se ve reflejada en el daño al pavimento y deterioran y fatigan la carpeta asfáltica, esto se intensifica por la acción constante de las cargas causadas por el exceso de esfuerzo que se puede admitir en la

capa inferior del pavimento, este tipo de falla presente en el pavimento se presentan con distinta severidad que van desde grietas finas hasta el desprendimiento de material hacia los bordes, entre estos tipos de severidad se presentan Bajo, para ello no se necesita intervención inmediata pues son grietas finas y sin ninguna conexión, para la severidad Medio se presentan grietas con una ligera interconexión sin causar descascaramiento en el pavimento y la severidad del tipo Alto, este tipo de severidad causa grietas que están bien marcadas y causan en la mayoría de los casos desprendimiento de los distintos materiales y causa problemas en el tráfico que se da en el pavimento asfáltico.

Vásquez (2002) afirmo que la falla **Exudación**, esta falla es causada por una delgada película de material bituminoso que se presenta en la superficie del pavimento asfáltico, la cual se expresa de forma de una superficie brillante causa principalmente por una cantidad excesiva de asfalto presente en la mezcla, y por las condiciones del ambiente con altas temperaturas que sobrepase la temperatura de diseño y con ello se presentan niveles de severidad que puede ser bajo, medio y alto; en donde para una severidad bajo se presentan solo en algunos días del año, y no causa inconvenientes entre la capa de rodadura y los neumáticos del parque automotor o el calzado de los peatones, para un nivel de severidad medio se hace presente y visible en pocas semanas del año y causa problemas a los neumáticos del parque automotor y a los zapatos, pues el asfalto queda impregnado en dichos elementos y por último el nivel de severidad alto se presentan durante varias semanas del año y puede causar accidentes por los niveles de asfalto que se pega en los neumáticos y también afecta a los peatones, con ello se tiene que realizarse un mantenimiento preventivo para solucionar este tipo de falla.

Vásquez (2002) también describió y nombre distintas fallas para pavimentos asfálticos que se analizan en la metodología PCI, entre los que se tiene al **agrietamiento de bloque** las cuales se interconectan y dividen al asfalto en distintos pedazos que en su

mayoría son figuras rectangulares cuyas dimensiones son desde 0,30 ml hasta 3,00 metros lineales por cada lado, cuyo origen radica cuando se contrae el concreto asfaltico, debido a la variabilidad de la temperatura del medio ambiente, también se presentan severidades de bajo, medio y alto para esta falla; la falla **Abultamiento y hundimiento**, la cual es ocasionada por diminutos desplazamientos hacia la parte superior del pavimento asfáltico que se encuentra en la superficie y sufre levantamiento o elevación del material que se presenta en el pavimento asfáltico; la falla **corrugación** se presentan a través de serie de elevaciones o cimas y depresiones, estas fallas se presentan a causa de problemas que por lo general no se separan por más de 3,0 m de longitud, las cuales son perpendiculares a la dirección en la que se realiza el transito del parque automotor y se debe principalmente a las bases que no presentan estabilidad en el terreno de construcción del pavimento asfaltico, estas fallas presentan también niveles de severidad alto, medio y bajo respectivamente.

Vásquez (2002) afirmo la falla denominada **grieta de borde**, la cual es un tipo de falla que se presenta principalmente cuando se presentan distancias que están en el intervalo de 0,30 m y 0,60 m, este se presentan en el borde que está en la parte exterior del pavimento asfáltico y es causado y se observa cuando es debilitado por los cambios en la temperatura y por malos estudios de la capa subrasante y el deficiente estudio del tráfico causado por el parque automotor; y Según Orozco (2004) y Varela (2018) afirmaron que la falla **huecos**, se debe a las mínimas depresiones que se presentan en el pavimento flexible y cuyas dimensiones no deben ser mayores a 0,90 metros, esto es causado principalmente por una acumulación excesiva de agua en su interior y por una mala dosificación de la mezcla asfáltica o por la presencia de otras fallas como la piel de cocodrilo y cuyo nivel de severidad debe ser alta.

También Menéndez (2009) afirmo que para la falla de **Ahuellamiento** se da por una malla dosificación y condiciones atípicas del lugar de construcción del pavimento flexible, esto se expresa como depresiones en las superficies de los neumáticos del parque automotor dependiendo de la frecuencia de uso y el tipo de transporte que se lleva a cabo en dicho pavimento, dentro de las dimensiones se tiene Ahuellamiento de 6,0 a 13,0 mm, distancias de más de 13,0mm pero no mayores a 25 mm y por último Ahuellamiento con más de 25,0mm que se presentan en los niveles de severidad como son bajo, medio y alto respectivamente para la evaluación del pavimento asfaltico y con ello se puede tomar decisiones para la intervención del pavimento y su programación para el mantenimiento y así poder lograr su extensión en la durabilidad del pavimento.

Otra falla también presentada por una losa según Vásquez (2002) afirmo que es las **grietas parabólicas**, dichas fallas presentan forma de media luna que se irá extendiendo a lo largo del pavimento flexible y es ocasionada principalmente por el freno intempestivo del parque automotor cuando van a girar o cambiar de dirección o sentido, esta forma de girar induce a que el pavimento se desplace y se presenta las deformaciones, para ello se presentan grietas no mayores a 10,0 mm, grietas mayores a 10,0 mm pero no mayor a 38,0 mm y por último grietas parabólicas con un ancho dimensional de no menor a 38,0 mm y además se observa fracturas y algunos trozos se puede retirar con mucha facilidad, esto debido a los niveles de severidad con el que se presenta la falla, las cuales son bajo, medio y alto respectivamente para el análisis y estudio del pavimento asfaltico.

Otra falla presente en el pavimento según Vásquez (2002) es la patología denominada **desnivel de carril o berma**, para la cual afirmo que se puede apreciar visualmente cuando se presentan desniveles en el pavimento causado principalmente por el aumento considerable de la infiltración del terreno en donde está ubicado el

pavimento, es por ello que esta falla se debe principalmente a las condiciones climatológicas y erosiones del suelo y son bastante peligrosas para el parque automotor que transita por el pavimento, la afectación de dicha patología se mide por el nivel de severidad de la falla y por la cantidad o frecuencia con la que se presenta en una determinada losa, estas fallas presentan 3 niveles de severidad tales como son el bajo, medio y alto y se representan simbólicamente como: B, M y A, respectivamente y para lo cual se tiene desniveles entre la berma y el pavimento se tiene rango que van desde 25 mm hasta más de 102 mm, generando así una condición no apta para la transitabilidad del pavimento, esto además impulsa al mantenimiento e intervención recomendada para los niveles de severidad, B, M y A son de realizar una inmediata renivelación del pavimento y las bermas con el objetivo de tener el mismo nivel o un desnivel no perceptible para el transporte ligero y pesado.

Según Vásquez (2002) también afirmo que la falla de **grieta longitudinal y transversales**, estas fallas se presenta a causa de las gradientes de temperatura, humedad o condiciones adversas que se presentan en el lugar de instalación del pavimento y que además se produce el alabeo constante, y el y hundimiento del terreno por la constante distribución de las cargas imprimidas al pavimento, entre estas fallas se puede encontrar patologías leves que no causan daño al pavimento hasta afectaciones que ocasionan agrietamientos que causan problemas severos a los vehículos de carga, así mismo se identifican 3 niveles de severidad los cuales son severidad baja, media y alta, representados por B, M y A respectivamente, llegando a la intervención de acuerdo a este tipo de severidad de estas fallas en la losa de estudio, teniendo así que los niveles de la severidad se miden para losas que no presentan esfuerzo y para losas con esfuerzo, y se da de acuerdo al ancho de la grieta. La intervención para B, M y A, se debe realizar, con ello dependiendo del nivel de severidad se interviene el pavimento desde sellados superficiales o refacciones a cambios profundos o reemplazo de la losa respectivamente.

Respecto a la metodología Vision Inspection de Zones et á Risque (VIZIR), se divide en dos tipos, tipo A y tipo B, de los cuales el tipo A esta relacionado con la condición estructural del pavimento y el tipo B está relacionado con aspectos funcionales del pavimento, en el apéndice 01 se muestra los daños y tipo que se utilizan para desarrollar la metodología. Así mismo se muestran el nivel de gravedad de acuerdo a los deteriores de tipo A y B. los procedimientos para la evaluación de la condición de los pavimentos con la metodología VIZIR, donde se realiza el índice de fisuración (If), índice de deformación (Id) e índice de deterioro superficial (Is).

El software EvalPav fue elaborado por el ingeniero del Ministerio de Transportes y Comunicaciones Gerber Zavala Ascaño fue desarrollado en la Dirección de Estudios Especiales de la Dirección General de Caminos y Ferrocarriles del referido ministerio. En el marco normativo de la entidad específicamente en el Reglamento de Organización y Funciones, fomenta y promueve la investigación y desarrollo de procedimientos y tecnologías aplicables a los estudios, obras y administración de infraestructura vial, como es el caso de las vías de transporte de pavimento flexible. Este programa se encarga de automatizar los procedimientos del Método PCI (Pavement Condition Index), para proporcionar un resultado en forma de reporte, estos reportes se desglosan por cada unidad muestral o por la sección en su totalidad. Cuando se presenta el reporte en su totalidad el programa proporciona hojas de cálculo que detallan en forma resumida los parámetros que han sido evaluados, el área de cada una de las unidades muestrales, la progresiva de inicio y de fin, la densidad de incidencia de cada una de las fallas presentes en la muestra, el valor deducido corregido (VDC) y por último la clasificación que le proporciona el Método PCI, es decir el estado de conservación que presenta el pavimento.

La **realidad problemática**, en las zonas pavimentadas se evidencian que los mantenimientos programados a dichas vías son escasos y en algunas ocasiones inexistentes, generando así que el control que se realiza a las vías es llevada a cabo cuando sus estado es crítico, lo que ocasiona que la identidad de Provias Nacional

tiendan a cambiar los pavimentos o en reiteradas ocasiones utilizar nuevo material durante toda la progresiva de la ciudad, es así que, a nivel internacional, los agentes públicos siempre han requerido conocer los estados iniciales de los pavimentos de cada zona que involucra el transporte vial de automóviles de carga liviana, pesada, etc., debido a los procesos administrativos que las gerencias de empresas de construcción civil siempre son realizadas por los mismos dueños, o por los ingenieros civiles, no siempre han logrado un buen índice de rentabilidad. Esta variable muy importante denominada PCI y VIZIR es el objetivo fundamental de toda organización pública como son los gobiernos regionales, provinciales, locales, etc., es por ello, que, a nivel internacional, se han desarrollado diversos métodos de cómo mejorarlo el mantenimiento programado de los pavimentos rígidos de la zona vial. En ese sentido, una de las metodologías usadas es el método del PCI y método VIZIR, la cual consiste en evaluar el estado actual del tramo de la carretera de la ciudad de Huaraz, utilizando para ello la comparación entre el método PCI y VIZIR.

La justificación brinda la importancia que se estudia en un trabajo de investigación, el cual brinda una base sólida, es por ello que según Hernández et al. (2014) afirman que la toda investigación debe presentar distintas razones fundamentales que motiven al investigador a efectuar un propósito definido con fuertes motivos que justifiquen la realización del trabajo en estudio y así se comprendido de una forma teoría, epistemológica, práctica y metodológica; estos razones y motivos de justificación deben contribuir a la solución de un problema o a la generación de un conocimiento inédito y a veces completamente nuevo que sea conveniente para la solución de un problema, además debe presentar una amplia relevancia social, es por ello de la importancia de la justificación del trabajo.

A nivel científico el presente trabajo de investigación brindara conocimientos solidos sobre la evaluación de pavimentos a través del método PCI y VIZIR, para la comunidad científica y para las empresas que se beneficiaran con el mantenimiento programado de las vías de pavimentos, este trabajo incidirá directamente en la evaluación de las patologías de la vía y su efecto en la optimización de los recursos, todo esto se desarrollará a través de la aplicación de las herramientas de la ingeniería civil y la metodología del método PCI y VIZIR, esta aplicación serán de una forma racional y seguirá rigurosamente el método científico con el único propósito de obtener datos y resultados de calidad que sean válidos y confiables y que sirvan de guía para futuras investigaciones.

A nivel social el presente trabajo de investigación mejorara las condiciones de estudio de patologías del pavimento, y con ello ayudara a la sociedad a tener estudios más detallados y así proponer a la de Huaraz a cumplir con los mantenimientos programados que contribuyan a aumentar la vida útil de la vía pavimentada del sector, además de contribuir con las empresas constructoras que les servirá de guía para la evaluación de la citada vía y con ello aumentara su rentabilidad.

Para ello se formuló el siguiente problema expresado en una **pregunta** ¿Cuál es el estado del pavimento asfáltico de la ruta nacional PE 3N del Kilómetro 574+00 al 577+00, de la ciudad de Huaraz, de acuerdo al análisis comparativo de los métodos VIZIR y PCI?, para ello se planteó la siguiente **hipótesis** La investigación que se presentará será una hipótesis de tipo **Implícita**. Así mismo se cuenta con el siguiente **objetivo general:** Evaluar el estado del pavimento asfáltico de la Ruta Nacional PE 3N del kilómetro 574+00 al 577+00, de la ciudad de Huaraz, aplicando los métodos del PCI y VIZIR. Teniendo los siguientes **objetivos específicos**: Determinar el índice de condición de pavimento (PCI) según la clasificación de la norma ASTM D6433-11 del pavimento asfáltico de la Ruta Nacional PE 3N del kilómetro 574+00 al 577+00, de la ciudad de Huaraz aplicando los Métodos del PCI., Determinar el índice de deterioro

superficial del pavimento asfáltico de la Ruta Nacional PE 3N del kilómetro 574+00 al 577+00, de la ciudad de Huaraz aplicando los Métodos del VIZIR. Determinar el porcentaje (%) del cemento asfaltico, Así mismo del agregado presente en un pavimento, utilizando el ensayo del Lavado asfaltico de la Ruta Nacional PE 3N del kilómetro 574+00 al 577+00, de la ciudad de Huaraz y Plantear propuesta de solución de la Ruta Nacional PE 3N del kilómetro 574+00 al 577+00, de la ciudad de Huaraz

II. METODOLOGÍA

2.1. Tipo y diseño de investigación

El tipo de investigación lo definió Carrasco (2013), como la utilización de las herramientas y técnicas que se adquieren a lo largo de la investigación teórica para solucionar los problemas de una forma práctica, es por ello que para el informe de investigación se utilizó el tipo de investigación **aplicada**.

El diseño de investigación según Hernández, Fernández & Baptista (2010), es Descriptivo, porque el procedimiento se realizó mediante la evaluación visual de fallas encontradas en el pavimento flexible, de los cuales se mostró las condiciones del pavimento mediante ensayos. Comparativa porque se realizó comparaciones entre las dos metodologías de evaluación (PCI y VIZIR), del cual se utilizó el método de mayor exactitud para la evaluación de la inspección visual del pavimento que fue sometido a estudio.

2.2. Población, muestra y muestreo

La población Según Hernández et al. (2014), definieron la población como el conjunto universal de los agentes, objetos, fenómenos, etc., que fueron sometidos a inferencia estadística. Para la investigación, la población está dada por la vía colectora de pavimento asfáltico de la Ruta Nacional PE 3N del kilómetro 574+00 al 577+00, de la ciudad de Huaraz, Provincia de Huaraz, departamento Ancash. De una longitud de 3+00.00 kilómetros.

La muestra según Tamayo & Tamayo (2006), definen a la muestra como una parte o porción similar de la población, la cual, representa cabalmente a la población generalizada, es por esta razón, que en el presente trabajo de investigación se utilizó como muestra a las fallas y el deterioro existentes del pavimento flexible. Se trabajaron en unidades de muestreos en la que presentan las fallas y deterioros en mayor orden, para el lavado asfaltico se analizaron 2 muestras, utilizando para ello el muestreo no probabilístico por conveniencia y de acuerdo a las normas técnicas.

2.3. Técnicas e instrumentos de investigación

Las técnicas utilizadas para la recolección de la información de los métodos PCI y VIZIR, estuvieron relacionadas con la observación directa del pavimento asfáltico de la carretera del tramo 3+00 km de la ciudad de Huaraz, asimismo se utilizó el análisis documental de los registros de los datos inspeccionados a lo largo de la vía, utilizando para ello la regulación de la norma ASTM D6433-11 para la metodología del PCI y VIZIR Guía INVIAS.

Los instrumentos utilizados para la ejecución del trabajo de investigación fueron el registro del formato de los métodos PCI y VIZIR, en donde se utilizó las cartas de la determinación de valor deducido, donde se presentan el daño de la falla y su grado de severidad, asimismo se utilizó el registro de diseño de falla del tramo de la carretera que fue sometida a inspección visual.

Tabla 1

Técnicas e instrumentos de investigación

Variable	Técnica	Técnica Instrumentos	
Método PCI / Método VIZIR	Investigación bibliográfica	Ficha Bibliográfica	Bibliotecas físicas y virtuales
	Observación	Registro del formato PCI/VIZIR	Encargado del pavimento flexible
	directa	Formatos del método PCI	Sector vial urbano de la ciudad de Huaraz.
Intervención del pavimento flexible	Análisis documental	Formatos del método PCI	Investigador
	Investigación bibliográfica	Ficha Bibliográfica	Bibliotecas físicas y virtuales

Fuente: Elaboración propia, basado en el método del proyecto.

2.4. Procesamiento y análisis de la información

Los datos que se obtuvieron respecto a las dimensiones de la variable en estudio, y en función de la aplicación del instrumento de investigación, han sido verificados, registrados, y posteriormente ingresados a la hoja de cálculo Microsoft Excel 2017, para que se realice la organización de los datos y la construcción de las tablas de frecuencia con la finalidad de presentar los resultados obtenidos de la inspección superficial del pavimento asfáltico, dicho pavimento flexible o asfaltico han sido evaluados por el método PCI y VIZIR, asimismo se utilizó el software de Evalpav, para el análisis e interpretación de los resultados. Para el lavado asfaltico se utilizó tablas de análisis granulométricos y curvas granulométricas, para tener así la caracterización física del tipo de suelo que fue sometido a la evaluación.

Tabla 2

Conceptuación y operacionalización de las variables

Variable	Definición Conceptual	Definición Operacional	Dimensión	Indicadores
Condición do	Es el estado	Brindando una	Método del PCI	Clasificación Según rango del PCI
Condición de la carpeta de rodadura	situacional en que se encuentra la vía.	superficie de rodamiento uniforme, cómoda y segura	Método del VIZIR	Clasificación Según rango Is.
		Al detectar un deterioro en la	Lavado asfaltico	Porcentaje (%) de cemento asfaltico
Condición del mantenimien to de la carpeta de rodadura	Se definen como el conjunto de actividades de obras de ingeniería vial.	carpeta asfáltica, debe ser subsanado en el mínimo tiempo de ejecución	Mantenimiento periódico	Sellos Asfálticos Tratamiento superficial Recapados Asfálticos
		desde el momento en que es detectado los diferentes tipos de falla.	Mantenimiento rutinario	Sellado de Fisuras y Grietas Parchado Superficial Parchado Profundo o bacheo

Fuente: Elaboración propia, basado en el método del proyecto.

III. RESULTADOS

3.1. Determinación del índice de condición de pavimento (PCI) según la clasificación de la norma ASTM D6433-11 del pavimento asfáltico de la Ruta Nacional PE 3N del kilómetro 574+00 al 577+00, de la ciudad de Huaraz aplicando los Métodos del PCI.

A continuación, se va a determinar el índice de condición de pavimento (PCI), para lo cual se va a realizar mediante la observación visual de la Ruta Nacional PE 3N del kilómetro 574+00 al 577+00, de la ciudad de Huaraz, el cual se realizó mediante los procedimientos indicados en el CAPITULO I; Método PCI y en el CAPITULO I; Método VIZIR de acuerdo a lo propuesto para cada metodología; así mismo, se interpretará los resultados procesados.

Luego de realizar la especificación del tramo de la carretera que fue sometido al estudio, se procede a detallar la metodología del método PCI. Las características de la vía, está relacionado mediante su longitud-ancho de la calzada según se muestra en la tabla a continuación. Asimismo también se seleccionó el área de la muestra, el cual estuvo dentro de los 230 ± 93 m².

Tabla 3.

Especificaciones del tramo de carretera

Característica	Descripción
Distancia del tramo (km)	3+00.00
Ancho del pavimento (m)	6.5
Longitud del tramo seleccionado como muestra (m)	40

Nota: Elaboración propia, basado en la información del tramo de carretera.

Luego de obtener las características del tramo de la carretera de estudio, se procedió a calcular el número total de muestras (N), donde se obtuvo:

$$N = \frac{3000}{40} = 75 \ Unid$$

Así mismo se determinó el área de la inspección por cada muestra (A), el cual estuvo determinado por la siguiente ecuación:

N = Longitud de la muestra (eje y) * Ancho del pavimento (eje x)m2

$$N = 40 \ m * 6.5 \ m = 260 \ m2$$

Se procedió con el procedimiento de cálculo del método PCI, para lo cual se utilizó el software Evalpav carreteras, para tener en cuenta el procedimiento del software y los tipos de procedimientos que realiza se utilizó como unidad de muestreo la décima toma de datos. Además se tuvo en cuenta las etapas que se deben seguir para llevar a cabo el procedimiento de datos, para ello se siguió la siguiente secuencia:

En la etapa 1, se realizó la selección de todas las fallas que se registraron en la guía de evaluación, asimismo, también de identifico el nivel de severidad de cada falla inspeccionada, luego se determinó la ubicación de las fallas según el diagrama del software Evalpav utilizando los ejes X y Y, se prosiguió con la determinación de la longitud y el ancho del pavimento, para determinar los metrados según su unidad de medida, luego se calculó la densidad de la falla utilizando para ello la siguiente formula

$$Densidad = \frac{\text{\'A}rea\ de\ falla}{\text{\'A}rea\ total}$$

Luego de obtener la densidad se procedió a determinar el valor deducido (VD) de cada tipo de falla registrada, asimismo, se tuvo en cuenta el nivel de severidad para cada falla según el estado del pavimento que fue inspeccionado.

Tabla 4.

Cálculo de la severidad del PCI

Doão	Severidad	Unid	Ubic	ación	Área	a longitudi	nal	Cantidades	Total
Daño	Severidad	Onia	X(m)	Y (m)	L (m)	A (m)	Unid	Cantidades	Total
1	L	m2	4	32	1	1	1	1	1
10	M	m	3	15	10		1	10	10
11	H	m2	2	25	5	4	1	20	20
11	L	m2	8	8	1	0.9	1	0.9	0.9
11	M	m2	4	37	2	1	1	2	2
16	M	m2	3	34	3	2	2	6	9.6
16	M	m2	4	7	6	0.6	2	3.6	9.6
3	M	m2	1	14	7	1.5	1	10.5	10.5

Nota: Elaboración propia, basado en la inspección visual.

Tabla 5.

Determinación de Valores Deducidos Individuales

Tipo	Severidad	Unid	Cant	idades parciales	Total	Densidad (%)	Valor deducido (VD)
PC	L	m2	1		1	0.40%	5.00
GLT	M	M	10		10	3.90%	10.00
PCH	Н	m2	20		20	7.70%	44.00
PCH	L	m2	0.9		0.9	0.40%	0.40
PCH	M	m2	2		2	0.80%	9.00
D	M	m2	3.6	6	9.6	3.70%	22.00
AB	M	m2	10.5		10.5	4.10%	12.00

Nota: Elaboración propia, basado en la inspección visual.

Luego de realizar el cálculo de la severidad del método PCI y la determinación de los valores deducidos individuales, se utiliza la siguiente ecuación para determinar el máximo número de valore deducidos:

$$mi = 1.00 + \frac{9}{98} * (100 - HDVi)$$

De la siguiente ecuación se tiene que:

mi: Es el número máximo admisible de valores deducidos

HDV: Es el mayor valor deducido individual

En la tabla 5 se presenta los procedimientos que se llevan a cabo para determinar el valor deducido máximo, el cual se inicia con la identificación de los primeros valores deducidos mayor a 2, y en base a ello se procede a reducir los valores deducidos hasta que los valores deducidos "q" sea 1, el cual daría como resultado el máximo valor deducido corregido adecuado.

Tabla 6.

Cálculo de valores deducidos corregidos

Ítem		Val	ores de	ducidos			VDT	a	VDC
1	44.00	22	12	10	9	5	102.00	6	50.00
2	44.00	22	12	10	9	2	99.00	5	51.40
3	44.00	22	12	10	2	2	92.00	4	52.20
4	44.00	22	12	2	2	2	84.00	3	53.10
5	44.00	22	2	2	2	2	74.00	2	53.80
6	44.00	2	2	2	2	2	54.00	1	54.00
			Total					Max CDV	54

Nota: Elaboración propia, basado en la metodología del método PCI.

De la tabla 5 se puede observar el máximo valor deducido corregido (HDV) igual a 54, asimismo, el PCI del tramo de la carretera se obtuvo restando 100 menos el máximo valor deducido, el cual brindó un indicador de 46.

Luego de determinar el indicador del método PCI, se procedió a determinar el porcentaje de daños, para lo cual se utilizó la metodología del método PCI. Para la evaluación se utilizó la calzada de la progresiva 3+00 km, en donde se tuvieron como unidad de inspección a 75 paneles del pavimento, en donde se evidenciaron los tipos de daños y el área total del daño, en la tabla 6 se muestran todos los datos obtenidos y respectivo resultado.

Tabla 7.

Porcentaje de daños que afectan a la calzada derecha por PCI

Tipo de daño	Unid	Total daño	% Área de daño	% Área total
Piel de cocodrilo	m2	466.85	19.97%	2.394%
Agrietamiento en Bloque	m2	180.63	7.72%	0.926%
Abultamientos y Hundimientos	M	6.00	0.26%	0.031%
Grieta de Borde	M	158.00	6.76%	0.810%
Grietas Longitudinales y Transversales	M	207.60	8.88%	1.065%
Parcheo y Acometidas de Servicios	m2	1,106.21	47.31%	5.673%
Huecos	m2	57.87	2.47%	0.297%
Desplazamiento	m2	24.07	1.03%	0.123%
Grieta Parabólica o Por Deslizamiento	m2	111.10	4.75%	0.570%
Desprendimiento de Agregado Grueso	m2	20	0.86%	0.103%
Total		2,338.34	100%	11.991%

Nota: Elaboración propia, basado en la metodología del método PCI.

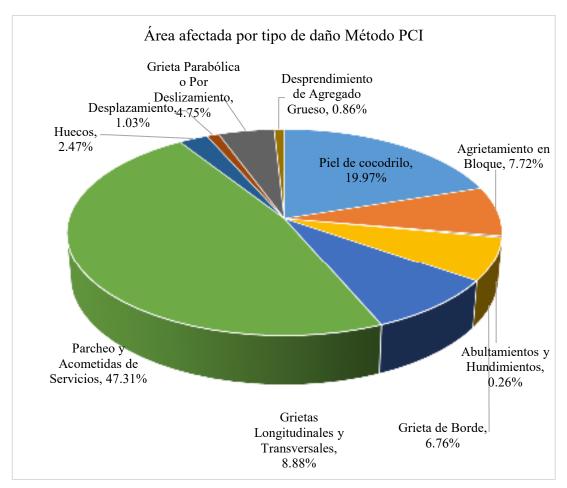


Figura 1. Área afectada por tipo de daño, de acuerdo al método PCI Nota: Elaboración propia, basado en la información de la tabla 6.

Luego de evaluar los porcentajes del área dañada de acuerdo al tipo de daño que se evidencia en la unidad de muestreo, se tiene al tipo parcheo y acometidas de servicios como el tipo de daño que mayor efecto tiene el área de daño del tramo estudiado.

Tabla 8.

Porcentaje de daños que afectan a la calzada derecha por PCI

Clasificación	Cantidad muestras	Porcentaje (%)
Excelente	19.00	25.33%
Muy Bueno	15.00	20.00%
Bueno	9.00	12.00%
Regular	18.00	24.00%
Pobre	8.00	10.67%
Muy Pobre	5.00	6.67%
Colapsado	1.00	1.33%
Total		100.00%

Nota.: Elaboración propia, basado en la evaluación del método PCI, tabla 7 y tabla 8.

ESTADO DEL PAVIMENTO ASFASTICO METODO PCI

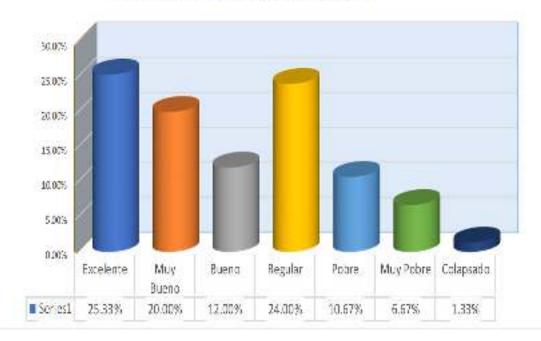


Figura 2. Porcentaje del Estado de la Carpeta Asfaltico Método PCI.

Nota: Elaboración propia, basado en la evaluación del método PCI.

3.2. Determinación del índice de deterioro superficial del pavimento asfáltico de la Ruta Nacional PE 3N del kilómetro 574+00 al 577+00, de la ciudad de Huaraz aplicando los Métodos del VIZIR.

Luego de determinar el porcentaje del estado de la carpeta asfaltico mediante la evaluación del método PCI, se procedió a realizar el cálculo mediante el método VIZIR, para lo cual se va a utilizó la longitud de la vía, el ancho y la longitud de la muestra; a continuación, se presenta los procedimientos llevados a cabo:

Tabla 9. *Especificaciones del tramo de carretera*

Característica	Descripción
Distancia del tramo (km)	3+00.00
Ancho del pavimento (m)	6.50
Longitud del tramo seleccionado como muestra (m)	100

Nota: Elaboración propia, basado en la información del tramo de carretera.

Luego de obtener las características del tramo de la carretera de estudio, se procedió a calcular el número total de muestras (N), donde se obtuvo:

$$N = \frac{3000}{100} = 30 \ Unid$$

Así mismo se determinó el área de la inspección por cada muestra (A), el cual estuvo determinado por la siguiente ecuación:

$$N = Longitud de la muestra (eje y) * Ancho del pavimento (eje x)m2$$

 $N = 100 m * 6.5 m = 650 m2$

Del mismo modo, se procedió a determinar el Índice de deterioro superficial (Is), para lo cual se tuvo como muestra el número 010, del procedimiento de resultados del software EvalPav carreteras y la compatibilidad de los resultados manuales elaborado

en el software Excel de la siguiente manera:

Primero se procedió a calcular la densidad en base a la totalidad de las fallas presentadas en el tramo de la carretera y su respectiva severidad de dichas fallas, para lo cual se utilizó la siguiente formula:

$$Densidad = \frac{\acute{A}rea\ de\ falla*100}{\acute{A}rea\ total}$$

Tabla 10.

Cálculo de la densidad de fallas

Ruta Nac	Ruta Nacional PE 3N del kilómetro 574+00 al 577+00 Muesta Nº 001												
		Prog	Progresiva		e la Via (m)	Area del Tramo (m2)		Is	Calif	icacion			
Metodo VIZIR		Inicio	Final	ancho	Longitud	650							
		574+000	574+100	6.5	100								
TIDO DE ELLI	Codigo	(RAVEDAD)	EXT	ENCION	10	.,	,				
TIPO DE FALLA	(INV)	1	2	3	Area	Porcentaje	If	Id	Iso	Ir			
Fisuras Piel de Cocodrilo	FPC		X		21	3.23%							
Fisuras longitudinales por fatiga	FLF												
Bacheo o parcheo (de deterioros Tipo A)	В	X	X		37.5	5.77%							
Fisuras de contracción térmica	FCT												
Desplazamiento o abultamiento o ahuellamiento de la mezcla	DM												
Desintegración de los bordes del pavimento	DB	X		X	16.8	2.58%							
Erosión de las bermas	EB	X			7.5	1.15%							
Pérdida de agregados PA					_								
Fisuras parabólicas	FP			X	11.1	1.71%							
Pérdida de la película de ligante	PL												

Nota: Elaboración propia, basado en el método VIZIR.

Se procede a identificar los índices de fisuración del tipo de fallas presentes en el tramo del pavimento que fue sometido a la inspección visual, para ello se procede a determinar los valores del índice de fisuración (If) el cual evidencio fisuras piel de cocodrilo (FPC).

Tabla 11.

Valores de índices de fisuración.

de	Extencion vs Gravedad	0% AL 10%	10% AL 50%	> 50%
lice rami (If)	1	1	2	3
Inc isu	2	2	3	4
F	3	3	4	5

Nota: Elaboración propia adaptado Guía INVIAS, basado en la metodología del método VIZIR

Luego se procede a determinar los valores del índice de deformación (Id), del tramo de la carretera que se somete a inspección visual.

Tabla 12.

Valores de índices de Deformación

e de lacion .)	Extencion vs Gravedad	0% AL 10%	10% AL 50%	> 50%
dice rm (Id)	1	1	2	3
Inc	2	2	3	4
A	3	3	4	5

Nota: Elaboración propia adaptado Guía INVIAS, basado en la metodología del método VIZIR

Tabla 13.

Cálculo del Índice de fisuramientos (If) y Índice de Deformación (Id)

Ruta Nac	cional PE	3N del kilói	metro 574+	00 al 577+	-00 Muesta	N° 001				
		Progresiva		Ancho d	e la Via (m)	Area del Tramo	(m2)	Is	Calif	icacion
Metodo VIZIR		Inicio	Final	ancho	Longitud	650				
				6.5	100	030				
TIDO DE FALLA	Codigo	(RAVEDAD)	EXT	ENCION	10	т 1	т	т
TIPO DE FALLA	(INV)	1	2	3	Area	Porcentaje	If	Id	Iso	Ir
Fisuras Piel de Cocodrilo	FPC		X		21	3.23%		2		
Fisuras longitudinales por fatiga	FLF							4		
Bacheo o parcheo (de deterioros Tipo A)	В	X	X		37.5	5.77%				
Fisuras de contracción térmica	FCT									
Desplazamiento o abultamiento o ahuellamiento de la mezcla	DM									
Desintegración de los bordes del pavimento	DB	X		X	16.8	2.58%	3			
Erosión de las bermas	EB	X			7.5	1.15%	1			
Pérdida de agregados	PA									
Fisuras parabólicas	FP			X	11.1	1.71%	3			
Pérdida de la película de ligante	PL									

Nota: Elaboración propia, basado en la metodología del método VIZIR

Luego de determinar los índices de fisuramientos (If) y los índices de deformación (Id) se procede el procedió con el cálculo de los valores de índice de deterioros superficial (Iso).

Tabla 14.

Valores de índice, de fisuración y deformación.

g	n de	de	SO	If vs Id	0	1 a 2	3	4 a 5
Primera	acion		rior	0	1	2	3	4
Pri	lifica	Indice	eter	1 a 2	3	3	4	5
	ali		D	3	4	5	5	6
				4 a 5	5	6	7	7

Nota: Elaboración propia adaptado Guía INVIAS, basado en la metodología del método VIZIR

Tabla 15.

Cálculo del Índice de Deterioro Superficial inicial (Iso)

Ruta Nacional PE 3N del kilómetro 574+00 al 577+00 Muesta N° 001											
		Progr	Progresiva		e la Via (m)	Area del Tramo (m2)		Is	Calif	icacion	
Metodo VIZIR		Inicio	Final	ancho	Longitud	650					
		574+000	574+100	6.5	100	030					
TIDO DE EALLA	Codigo	G	RAVEDAD)	EXT	ENCION	τc	L I	T	T.,	
TIPO DE FALLA	(INV)	1	2	3	Area	Porcentaje	If	Id	Iso	Ir	
Fisuras Piel de Cocodrilo	FPC		X		21	3.23%		2			
Fisuras longitudinales por fatiga	FLF							4			
Bacheo o parcheo (de deterioros Tipo A)	В	X	X		37.5	5.77%					
Fisuras de contracción térmica	FCT										
Desplazamiento o abultamiento o	DM										
ahuellamiento de la mezcla	DIVI								3		
Desintegración de los bordes del pavimento	DB	X		X	16.8	2.58%	3				
Erosión de las bermas	EB	X			7.5	1.15%	1				
Pérdida de agregados	PA										
Fisuras parabólicas	FP			X	11.1	1.71%	3				
Pérdida de la película de ligante	PL										

Nota: Elaboración propia, basado en la metodología del método VIZIR

Al determinar los índices de deterioro superficial inicial (Iso), se presenta en los registros de los tipos de fallas bacheos y parcheo, se va a tener un valor de índice de deterioro superficial (Is), que indica que se debe corregir el tramos del pavimento de acuerdo al nivel de severidad y densidad de la falla presente en la vía, en la siguiente figura se muestra el valor de corrección.

Tabla 16.

Cálculo del Índice de Deterioro Superficial inicial (Iso)

eccion	e de	acion)	Extencion vs Gravedad	0% AL 10%	10% AL 50%	> 50%
rec	dice	rm (Id)	1	0	0	0
Cor	In	efo	2	0	0	0+1
		D	3	0	0+1	0+1

Nota: Elaboración propia, basado en la metodología del método VIZIR

Tabla 17.

Cálculo de corrección Índice de Corrección (Ir)

Ruta Nacional PE 3N del kilómetro 574+00 al 577+00 Muesta Nº 001												
		Progresiva		Ancho d	e la Via (m)	Area del Tramo (m2)		Is	Calif	icacion		
Metodo VIZIR		Inicio	Final	ancho	Longitud	650						
		574+000	574+100	6.5	100							
TIPO DE FALLA	Codigo	G	GRAVEDAD)	EXT	ENCION	If	Id	Iso	L,		
IIPO DE FALLA	(INV)	1	2	3	Area	Porcentaje	Ш	10	150	Ir		
Fisuras Piel de Cocodrilo	FPC		X		21	3.23%		2				
Fisuras longitudinales por fatiga	FLF											
Bacheo o parcheo (de deterioros Tipo A)	В	X	X		37.5	5.77%						
Fisuras de contracción térmica	FCT											
Desplazamiento o abultamiento o	DM											
ahuellamiento de la mezcla	DIVI								3	0		
Desintegración de los bordes del pavimento	DB	X		X	16.8	2.58%	2					
Erosión de las bermas	EB	X			7.5	1.15%	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
Pérdida de agregados	PA											
Fisuras parabólicas	FP			X	11.1	1.71%						
Pérdida de la película de ligante	PL											

Nota: Elaboración propia, basado en la metodología del método VIZIR

Luego de realizar el cálculo del índice de corrección (Ic), se procede a determinar la calificación de acuerdo a la escala de la metodología VIZIR.

Tabla 18.

Resultado final del Método VIZIR

	Ruta Nacional PE 3N del kilómetro 574+00 al 577+00 Muesta N° 001										
			Progr	esiva	Ancho d	e la Via (m)	Area del Tramo	(m2)	Is	Calif	cacion
	Metodo VIZIR		Inicio	Final	ancho	Longitud	(50		•	A DEC	
			574+000	574+100	6.5	100	650		3	KEG	ULAR
	TIPO DE FALLA	Codigo	G	RAVEDAD)	EXT	ENCION	If	Id	Iso	Ir
	HPO DE FALLA	(INV)	1	2	3	Area	Porcentaje	II	10	ISO	ır
Tipo "A"	Fisuras Piel de Cocodrilo	FPC		X		21	3.23%		2		
Estructurales	Fisuras longitudinales por fatiga	FLF					-				
Loudoudico	Bacheo o parcheo (de deterioros Tipo A)	В	X	X		37.5	5.77%				
es	Fisuras de contracción térmica	FCT					-				
Funcionales	Desplazamiento o abultamiento o ahuellamiento de la mezcla	DM					-			3	0
n u	Desintegración de los bordes del pavimento	DB	X		X	16.8	2.58%	2			
	Erosión de las bermas	EB	X			7.5	1.15%				
"B	Pérdida de agregados	PA					-				
Tipo "B"	Fisuras parabólicas	FP			X	11.1	1.71%				
Ë	Pérdida de la película de ligante	PL									

Nota: Elaboración propia, basado en la metodología del método VIZIR.

3.3. Determinación del porcentaje (%) del cemento asfaltico, Así mismo del agregado presente en un pavimento, utilizando el ensayo del Lavado asfaltico de la Ruta Nacional PE 3N del kilómetro 574+00 al 577+00, de la ciudad de Huaraz

A continuación, se presenta el porcentaje del cemento asfaltico, para el cual se utilizó el tramo evaluado de 3,000.00m se registraron 30 unidades de muestreo, las cuales presentaron los siguientes daños representativos que se muestran a continuación:

Tabla 19.

Porcentaje del daño tipo A que afecta a la calzada por VIZIR

TIPO DE DAÑO "A"	Codigo (INV)	Daño Total	% Area de Daño	% Area Total
Bacheo o parcheo (de deterioros Tipo A)	В	1038.900	45.03%	5.33%
Fisuras longitudinales por fatiga	FLF	213.4	9.25%	1.09%
Fisuras Piel de Cocodrilo	FPC	513.4	22.25%	2.63%
TOTAL DE DAÑO TIPO "A"		1765.700	76.53%	

Nota: Elaboración propia, basado en el método VIRIZ

Los deterioros tipo A son los más representativos e importantes en la metodología VIZIR, ya que con estos daños se calculan los índices de condición del pavimento (Is). En la tabla 16 se muestra el % del área total que representa cada daño sobre el área total del tramo estudiado que corresponde a 19500m² y el % área de daño equivale al porcentaje que representa cada tipo de daño sobre la totalidad del área de los daños que corresponde a 1765,70 m².

Figura 3. Área afectada por tipo de daño A.

Nota: Elaboración propia, basado en el tipo de daño que muestra el método VIZIR

Tabla 20.

Porcentaje del daño tipo B que afecta a la calzada por VIZIR

TIPO DE DAÑO "B"	Codigo (INV)	Daño Total	% Area de Daño	% Area Total
Desintegración de los bordes del pavimento	DB	151.5	6.57%	0.78%
Desplazamiento o abultamiento o ahuellamiento de la mezcla	DM	28	1.21%	0.14%
Erosión de las bermas	EB	104.6	4.53%	0.54%
Fisuras parabólicas	FP	11.1	0.48%	0.06%
Pérdida de agregados	PA	57.82	2.51%	0.30%
Pérdida de la película de ligante	PL	8	0.35%	0.04%
Fisuras de contracción térmica	FCT	180.6	7.83%	0.93%
TOTAL DE DAÑO TIPO "B"		541.62	23.47%	

Nota: Elaboración propia, basado en la metodología VIZIR.

En la tabla 17 se muestra el % de área total que representa cada daño sobre el área total del tramo estudiado que corresponde a 19500m² y el % y el área de daño equivale al porcentaje que representa cada tipo de daño sobre la totalidad del área de los daños que corresponde a 541.62 m².

Figura 4. Porcentaje de daños de tipo estructural del Área afectada por daño de tipo B. Nota: Elaboración propia, basado en el porcentaje del área afectada

Tabla 21.

Resumen de los daños de tipo A y tipo B por VIZIR

TOTAL DE DETERIORAMIENTO SUPERFICIAL	Daño Total	% Area de Daño	% Area Total
TOTAL DE DAÑO TIPO "A"	1765.700	76.53%	9.05%
TOTAL DE DAÑO TIPO "B"	541.62	23.47%	2.78%
TOTAL DE DAÑO DE TIPO "A" y "B"	2307.320	100.00%	

Nota: Elaboración propia, basado en la información de los daños A y B.

En la Tabla 19 se puede apreciar que el valor promedio del método VIZIR del tramo de bloque izquierdo el cual obtuvo un valor de 3.633, redondeando a número entero es 4, por lo que clasifica el estado del pavimento como REGULAR. Asimismo, en la Tabla 20 se muestra un resumen de todas las muestras evaluadas indicando el porcentaje de cada una de las condiciones de las muestras evaluadas.

Tabla 22.

Frecuencia de las categorías del método VIZIR

Clasificasión	N° de Muestra	Porcentaje
BUENO	3	10.00%
REGULAR	19	63.33%
DEFICIENTE	8	26.67%
TOTAL	30	100.00%

Nota: Elaboración propia, basado en los datos del método VIZIR

Los resultados se muestran de una forma gráfica en la siguiente figura:

Figura 5. Porcentaje del Estado del pavimento método VIZIR.

Nota: Elaboración propia, basado en el estado del pavimento asfaltico

Luego de realizar la evaluación del pavimento asfaltico a través del método PCI y del método VIZIR, se procedió a realizar la comparación de resultados de ambas metodologías, para lo cual se utilizó los resultados finales para las 75 unidades de muestreo para el método PCI y para el método VIZIR se utilizó 30 unidades de muestreo, aplicando ambas metodologías por kilómetro, como se muestra a continuación

Tabla 23.

Resumen comparativo por ambos métodos

UND. de	PROGRESIVA		CALI	FICACION PCI
MUESTRA	Inicial	Final	PCI	Clasicicación
1	574+000	574+040	51	Regular
2	574+040	574+080	41	Regular
3	574+080	574+120	92	Excelente
4	574+120	574+160	23	Muy Pobre
5	574+160	574+200	19	Muy Pobre
6	574+200	574+240	82	Muy Bueno
7	574+240	574+280	95	Excelente
8	574+280	574+320	90	Excelente
9	574+320	574+360	61	Bueno
10	574+360	574+400	46	Regular
11	574+400	574+440	39	Pobre
12	574+440	574+480	12	Muy Pobre
13	574+480	575+520	17	Muy Pobre
14	574+520	574+560	94	Excelente
15	574+560	574+600	80	Muy Bueno
16	574+600	574+640	56	Bueno
17	574+640	574+680	89	Excelente
18	574+680	574+720	60	Bueno
19	574+720	574+760	89	Excelente
20	574+760	574+800	94	Excelente
21	574+800	574+840	81	Muy Bueno
22	574+840	574+880	94	Excelente
23	574+880	574+920	85	Excelente
24	574+920	574+960	91	Excelente
25	574+960	575+000	95	Excelente
RESU	RESULTADO POR Km			BUENO

UND. de	PROGRESIVA		CALIF	ICACION VIZIR
MUESTRA	Inicial	Final	Valor	Calificación
M - 001	574+000	574 + 100	3	REGULAR
M - 002	574 + 100	574 + 200	5	REGULAR
M - 003	574 + 200	574 + 300	2	BUENO
M - 004	574 + 300	574+400	3	REGULAR
M - 005	574+400	574 + 500	4	REGULAR
M - 006	574 + 500	574 + 600	3	REGULAR
M - 007	574 + 600	574 + 700	3	REGULAR
M - 008	574 + 700	574 + 800	3	REGULAR
M - 009	574 + 800	574+900	2	BUENO
M - 010	574+900	575 + 000	2	BUENO
RESU	LTADO POR	Km	3	REGULAR

UND. de	PROGE	PROGRESIVA		FICACION PCI
MUESTRA	Inicial	Final	PCI	Clasicicación
26	575+000	575+040	72	Muy Bueno
27	575+040	575+080	56	Bueno
28	575+080	575+120	44	Regular
29	575+120	575+160	51	Regular
30	575+160	575+200	92	Excelente
31	575+200	575+240	59	Bueno
32	575+240	575+280	81	Muy Bueno
33	575+280	575+320	78	Muy Bueno
34	575+320	575+360	54	Regular
35	575+360	575+400	88	Excelente
36	575+400	575+440	77	Muy Bueno
37	575+440	575+480	96	Excelente
38	575+480	575+520	89	Excelente
39	575+520	575+560	78	Muy Bueno
40	575+560	575+600	87	Excelente
41	575+600	575+640	91	Excelente
42	575+640	575+680	91	Excelente
43	575+680	575+720	83	Muy Bueno
44	575+720	575+760	82	Muy Bueno
45	575+760	575+800	40	Regular
46	575+800	575+840	81	Muy Bueno
47	575+840	575+880	76	Muy Bueno
48	575+880	575+920	87	Excelente
49	575+920	575+960	69	Bueno
50	575+960	576+000	4	Colapsado
RESU	RESULTADO POR Km			BUENO

UND. de	PROGRESIVA		CALIF	ICACION VIZIR
MUESTRA	Inicial	Final	VIZIR	Clasicicación
M - 011	575 + 000	575 + 100	3	REGULAR
M - 012	575 + 100	575 + 200	5	DEFICIENTE
M - 013	575 + 200	575 + 300	5	DEFICIENTE
M - 014	575 + 300	574+400	4	REGULAR
M - 015	574+400	575 + 500	3	REGULAR
M - 016	575 + 500	575 + 600	3	REGULAR
M - 017	575 + 600	575 + 700	3	REGULAR
M - 018	575 + 700	575 + 800	4	DEFICIENTE
M - 019	575 + 800	575+900	3	REGULAR
M - 020	575+900	576 + 000	4	REGULAR
RESU	LTADO POR	Km	3.70	REGULAR

UND. de	PROGR	PROGRESIVA		PROGRESIVA CALIFICAC		
MUESTRA	Inicial	Final	PCI	Clasicicación		
51	576+000	576+040	26	Pobre		
52	576+040	576+080	82	Muy Bueno		
53	576+080	576+120	48	Regular		
54	576+120	576+160	56	Bueno		
55	576+160	576+200	53	Regular		
56	576+200	576+240	46	Regular		
57	576+240	576+280	70	Muy Bueno		
58	576+280	576+320	40	Regular		
59	576+320	576+360	39	Pobre		
60	576+360	576+400	52	Regular		
61	576+400	576+440	24	Muy Pobre		
62	576+440	576+480	26	Pobre		
63	576+480	576+520	45	Regular		
64	576+520	576+560	53	Regular		
65	576+560	576+600	76	Muy Bueno		
66	576+600	576+640	30	Pobre		
67	576+640	576+680	35	Pobre		
68	576+680	576+720	36	Pobre		
69	576+720	576+760	34	Pobre		
70	576+760	576+800	47	Regular		
71	576+800	576+840	59	Bueno		
72	576+840	576+880	54	Regular		
73	576+880	576+920	46	Regular		
74	576+920	576+960	43	Regular		
75	576+960	577+000	62	Bueno		
RESULTADO POR Km			47.28	REGULAR		

UND. de	PROGRESIVA		CALIF	TCACION VIZIR	
MUESTRA	Inicial	Final	PCI	Clasicicación	
M - 021	576 + 000	576 + 100	5	DEFICIENTE	
M - 022	576 + 100	576 + 200	5	DEFICIENTE	
M - 023	576 + 200	576 + 300	5	DEFICIENTE	
M - 024	576 + 300	576+400	3	REGULAR	
M - 025	576+400	576 + 500	4	REGULAR	
M - 026	576 + 500	576 + 600.	3	REGULAR	
M - 027	576 + 600.	576 + 700	5	DEFICIENTE	
M - 028	576 + 700	576 + 800	4	REGULAR	
M - 029	576 + 800	576 + 900	3	REGULAR	
M - 030	576 + 900	577 + 000	5	DEFICIENTE	
RESU	LTADO POR	Km	4.20	REGULAR	

RESULTADO POR Km 47.28 | REGULAR |
Nota: Elaboración propia, basado en las metodologías PCI y VIZIR.

A continuación, se presenta la calificación obtenida por cada kilómetro, utilizando para ello la metodología PCI y la metodología VIZIR.

Tabla 24.

Resumen comparativo según métodos PCI y VIZIR

METODO

Progresiva	PCI		VIZIR	
Por Km 574+00 al 575+00	67	Bueno	3.00	Regular
Por Km 575+00 al 576+00	72	Bueno	4.00	Regular
Por Km 576+00 al 577+00	47	Regular	4.00	Regular

Fuente: Elaboración propia, basado en las metodologías PCI y VIZIR

Los resultados de las dos metodologías del Km 574+00 al 575+00 evidenciaron que la vía se encuentra en condición de buena, debido a que se obtuvo un valor de PCI de 67, asimismo con la evaluación de la metodología VIZIR, la evaluación del pavimento obtuvo una puntuación de 3 lo que indica que la vía se encuentra en condición regular, las característica de evaluación de las dos metodologías tienen algunas diferencias debido a las diversidad de parámetros que tiene cada una de ellas, como se sabe el método VIZIR tiene 07 resultados posibles y el método PCI tiene 07 intervalos de resultados posibles, se formuló porcentajes para la comparación correspondiente

Tabla 25.

Porcentajes equivalentes para cada muestra

VIZIR	Porcentaje	PCI	Porcentaje
1	100.000	100 - 85	100.000
2	85.714	85 - 70	85.714
3	71.429	70 - 55	71.429
4	57.143	55 - 40	57.143
5	42.863	40 - 25	42.863
6	28.571	25 10	28.571
7	14.286	10 - 0	14.286

Nota: Elaboración propia, basado en las metodologías PCI y VIZIR.

El resultado obtenido del valor mínimo equivalente de 14.29 se realizó la división del máximo valor de clasificación en este caso es 100 entre el número de resultados posibles para VIZIR y PCI que en este caso es 7 y así sucesivamente llegamos al máximo valor Entonces utilizando estos valores equivalentes lo reemplazamos a los resultados de cada muestra al aplicar PCI y VIZIR.

Tabla 26.
Porcentajes equivalentes para cada muestra

PROGRESIVA	PCI		VIZIR		% PCI	% VIZIR
574+00 - 575+00	67.00	BUENO	3.00	REGULAR	71.429	71.429
575+00 - 576+00	72.00	BUENO	4.00	REGULAR	85.714	57.143
576+00 - 577+00	47.00	REGULAR	4.00	REGULAR	57.143	57.143
PORCENTAJE TOTAL					71.4287	61.905

Nota: Elaboración propia, basado en la comparación de los métodos

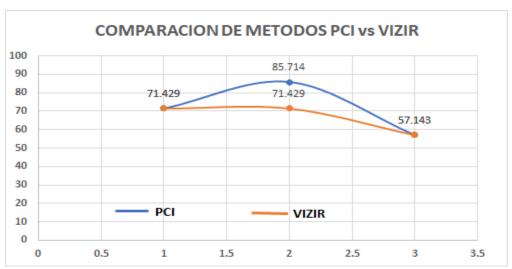


Figura 6. Resultado de la comparación entre el método PCI y VIZIR.

Nota: Elaboración propia, basado en la comparación de los métodos de evaluación.

En el Figura 10 se muestra que en algunos puntos no hay una tendencia paralela entre las dos metodologías, esto es debido a que existen diferentes criterios para la evaluación del pavimento. Si bien es cierto existe variación perceptiva de los métodos, ambos dan como resultado el estado actual de los pavimentos que son sometidos a estudio y evaluación superficial.

Debido a la diferencia de rango de clasificación de ambas metodologías es que van a presentar algunas diferencias y similitudes en los resultados de cada unidad de muestreo. Teniendo como resultado final de comparación entre ambos métodos de similitud se observa los indicadores finales que presentan ambos métodos.

Resumen de resultado finales de los métodos PCI, VIZIR y del Lavado asfaltico.

Tabla 27.

Análisis comparativo con los Métodos PCI y VIZIR

	PCI	VIZIR
Desultade final commenties	62.00	3.67
Resultado final comparativo	"BUENO"	"REGULAR"

Nota: Elaboración propia, basado en la comparación de los métodos

Tabla 28.

Determinación del Índice de Condiciones del Pavimento (PCI) y Índice de Deterioro

Superficial (Is) aplicando los Métodos PCI y VIZIR

	RESULTADO FINAL	CLASIFICACION
Indice de condicion del Pavimento (PCI)	62	BUENA
indice de Deterioro Superficial (Is)	4	REGULAR

Nota: Elaboración propia, basado en la comparación de los métodos

A continuación, se muestra se muestra los resultados obtenidos tras realizar el ensayo de lavado de asfalto y análisis granulométrico, los cuales presentan los resultados finalizados de ambas metodologías. Los ensayos elaborados indican la cantidad de material bituminoso que se encontraba en la mezcla asfáltica, considerando el diseño asfaltico; así mismo, los resultados se encuentran.

Para realizar el ensayo de la muestra 01 y 02, como ejemplo de la muestra 01 se procede con el peso de la mezcla (gramos) 859.50gr y el Peso Lavado 803.00gr con una diferencia de 56.50gr. con un resultado de porcentaje de contenido asfaltico 6.570%

Tabla 29.

Resultado del porcentaje y agregado del pavimento flexible.

UBICACIÓN	ENSAYO	DESCRIPCION	RESULTADO (%)
KM 575+00	M-01	Lavado Asfaltico	6.570%
KM 576+00	M-02	Lavado Asfaltico	6.420%
PROMED	6.50%		

Nota: Elaboración propia, basado en la comparación de los métodos

3.4. Plantear propuesta de solución de la Ruta Nacional PE 3N del kilómetro 574+00 al 577+00, de la ciudad de Huaraz

Luego de haber obtenido los resultados de cada uno de los trabajos de campo y analizado cada una de ellas a través de los diferentes métodos evaluados se pudo evidenciar que dicho tramo se encuentra en condición REGULAR de acuerdo a los métodos PCI y VIZIR.

Tabla 30.

Porcentaje de área afectada de la calzada por el método PCI

TIPO DE DAÑO	UNIDAD DE MEDIDA	TOTAL DAÑO	% AREA DE DAÑO	% AREA TOTAL
Piel de cocodrilo	m2	466.85	19.97%	2.394%
Agrietamiento en Bloque	m2	180.63	7.72%	0.926%
Abultamientos y Hundimientos	m	6.00	0.26%	0.031%
Grieta de Borde	m	158.00	6.76%	0.810%
Grietas Longitudinales y Transversales	m	207.60	8.88%	1.065%
Parcheo y Acometidas de Servicios	m2	1,106.21	47.31%	5.673%
Huecos	m2	57.87	2.47%	0.297%
Desplazamiento	m2	24.07	1.03%	0.123%
Grieta Parabólica o Por Deslizamiento	m2	111.10	4.75%	0.570%
Desprendimiento de Agregado Grueso	m2	20.00	0.86%	0.103%
		2,338.34	100.00%	11.991%

Nota: Elaboración propia, basado en el porcentaje de área afectada de la vía.

Niveles de severidad asociados con la calidad de viaje

L (Low: Bajo): Se perciben vibraciones en el vehículo (por ejemplo, Corrugaciones) pero no es necesario reducir la velocidad para conservar la comodidad o la seguridad del viaje. Algunos Abultamientos o Hundimientos pueden causar un ligero rebote del vehículo, pero causan poca incomodidad.

M (Medium: Medio): Las vibraciones en el vehículo son significativas y se requiere reducir la velocidad para conservar la comodidad y la seguridad del viaje. Algunos Abultamientos o Hundimientos pueden causar un rebote significativo, lo cual genera mayor incomodidad.

H (High: Alto): Las vibraciones en el vehículo son excesivas y se debe reducir la velocidad de forma significativa para conservar la comodidad y la seguridad del viaje. Algunos Abultamientos o Hundimientos pueden causar un rebote excesivo del

vehículo y generan incomodidad sustancial, peligro para la seguridad y daño potencial del vehículo.

En la tabla 40 las principales fallas que afecta la vía son:

Parcheo y acometidas de servicio

L: No se hace nada.

M: No se hace nada. Sustitución del parche.

H: Sustitución del parche.

Piel de cocodrilo:

L: No se hace nada. Sello superficial. Sobrecarpeta.

M: Parcheo parcial o profundo. Sobrecarpeta. Reconstrucción.

H: Parcheo parcial o profundo. Sobrecarpeta. Reconstrucción.

Grietas longitudinales y transversales:

L: No se hace nada. Sello de grietas de ancho mayor que 3.0 mm.

M: Sello de grietas.

H: Sello de grietas. Parcheo parcial.

Agrietamiento en bloque:

L: Sello de grietas con ancho mayor que 3.0 mm. Riego de sello.

M: Sello de grietas. Reciclado superficial. Escarificado en caliente y sobrecarpeta.

H: Sello de grietas. Reciclado superficial. Escarificado en caliente y sobrecarpeta.

Grita parabólica o deslizamiento:

L: No se hace nada. Parcheo parcial.

M: Parcheo parcial.

H: Parcheo parcial.

Hueco:

L: No se hace nada. Parcheo parcial o profundo.

M: Parcheo parcial o profundo.

H: Parcheo profundo.

Desplazamiento:

L: No se hace nada. Fresado.

M: Fresado. Parcheo parcial o profundo.

H: Fresado. Parcheo parcial o profundo.

Desprendimiento del agregado grueso:

M: Pérdida considerable de agregado, más de 20 por metro cuadrado, o se observan grupos de agregados perdidos.

H: La superficie es muy rugosa y agujereada, y puede estar completamente removida en algunos sitios.

Abultamiento y hundimiento:

L: No se hace nada.

M: Reciclado en frío. Parcheo profundo o parcial.

H: Reciclado (fresado) en frío. Parcheo profundo o parcial. Sobrecarpeta, parcheo.

Tabla 31.

Porcentaje de área afectada de ambas calzadas por el método VIZIR

	TIPO DEDAÑO	Codigo (INV)	Daño Total	% Area de Daño	% Area Total
TIPO A	Bacheo o parcheo (de deterioros Tipo A)	В	1038.900	45.03%	5.33%
	Fisuras longitudinales por fatiga	FLF	213.4	9.25%	1.09%
Estructural	Fisuras Piel de Cocodrilo	FPC	513.4	22.25%	2.63%
	Desintegración de los bordes del pavimento	DB	151.5	6.57%	0.78%
	Desplazamiento o abultamiento o ahuellamiento de la mezcla	DM	28	1.21%	0.14%
TIPO B	Erosión de las bermas	EB	104.6	4.53%	0.54%
Funcional	Fisuras parabólicas	FP	11.1	0.48%	0.06%
	Pérdida de agregados	PA	57.82	2.51%	0.30%
	Pérdida de la película de ligante	PL	8	0.35%	0.04%
	Fisuras de contracción térmica	FCT	180.6	7.83%	0.93%
	TOTAL		2307.320	100.00%	11.83%

Nota: Elaboración propia, basado en el porcentaje de área afectada de la vía.

Según VIZIR recomienda intervenir con alternativas de solución:

Para la piel de cocodrilo: El tratamiento adecuado es sobrecapa estructural, reciclado en frío en el sitio, reciclado en planta en caliente.

Para las grietas longitudinales por fatiga: El tratamiento adecuado es la sobrecapa estructural.

Para las grietas de contracción térmica: El tratamiento adecuado es fresado y sobrecapa.

Desintegración de los bordes de pavimento: el tratamiento adecuado es Fresado y sobrecapa.

Tal como se muestrea en los resultados de las metodologías del método PCI y VIZIR, muestran alternativas de solución para el mantenimiento programado de las vías de acceso, utilizando para ello la inspección visual de los tipos de falla existentes. Asimismo, al desarrollar los dos tipo de metodologías, se pudo brindar recomendaciones para las diferentes fallas presentadas.

Las fallas que presentan severidad media o alta deben de realizar un fresado de carpeta asfáltica, dando un tratamiento a la capa de rodadura, lo cual va a incluir que los trabajos de reconstrucción con mezcla asfáltica en caliente de las capas bituminosas, en parte o en todo su espesor sean como una actividad de posible uso.

Asimismo, para el pavimento que se encuentra en estado regular, debe utilizar el reciclado superficial, con la finalidad de reutilizar el material que se encuentra colocado en la estructura del pavimento para una nueva estructura vial, para ello se debe tener en cuenta los estudios detallados de los espesores y características de las capas de la carretera tengan una procedencia estándar y que sean revisados y aprobados.

En lo relacionado al tipo de pavimento con un tipo de falla de parchado superficial, se puede utilizar actividades relacionadas a la reparación de baches y el reemplazo de áreas del pavimento que se encuentran deterioradas, teniendo presente que solo afecte a la superficie de rodadura encontrándose en buenas condiciones la base granular y demás capas.

Tabla 32

Propuesta de solución

PROGE	RESIVA							
Inicial	Final	Descripción	PCI	VIZIR	Intervencion	Principales Actividades (Tabla N°14,15)		
		Rango	[55 - 70]	[3 - 4]				*Sellado de Fisuras y Grietas en calzada
574+000 575+000	575+000	Resultado	67	3	Mantenimiento Rutinario	*Parcheo profundo o bacheo *Parchado superficial		
		Clasificacion	BUENO	REGULAR				
	576+000	Rango	[70 - 85]	[3 - 4]	Mantenimiento Rutinario	*Sellado de Fisuras y Grietas en calzada		
575+000 576+000		Resultado	72	4				
		Clasificacion	BUENO	REGULAR		*Parchado superficial		
	0 577+000	Rango	[40 - 55]	[3 - 4]		Fresado y Microfresado		
576+000		Resultado	47	4	Mantenimiento periodico	de Carpeta Asfáltica Nivelación de bermas con		
		Clasificacion	REGULAR	REGULAR		mezcla asfáltica.		

Nota: Elaboración propia, basado en las actividades principales de las fallas

IV. ANÁLISIS Y DISCUSIÓN

La evaluación del estado del pavimento asfáltico de la Ruta Nacional PE 3N del kilómetro 574+00 al 577+00, de la ciudad de Huaraz, a través de los métodos del PCI y VIZIR. En esta calzada se evaluó la progresiva de 3+00.00 Km donde se registraron 75 unidades de muestreo longitud de 40m por un ancho de 6.50m, en donde se evidencio que las fallas que existe en la carpeta asfáltica es: Parcheo y Acometidas de Servicios, Piel de cocodrilo, Grietas Longitudinales y Transversales, Agrietamiento en Bloque, Grieta de Borde, Grieta Parabólica o Por Deslizamiento, Huecos, Desplazamiento, Desprendimiento de Agregado Grueso y Abultamientos y Hundimientos, de los cuales mostraron indicadores promedio de los PCI = 62.19 que equivale a un PCI de 62 general, arrojando una clasificación "BUENA", esto indica que los tramos nuevos no son suficientes para arrojar una clasificación muy buena, y a traves de la metodología VIZIR se VIZIR, evidencio un valor promedio total del índice de Deterioro Superficial (Is) que es 4 que define el estado del pavimento como REGULAR. De acuerdo al ensayo lavado asfaltico se puede observar que el pavimento se encuentra en una gradación OPTIMA de 6.50% de porcentaje de asfaltico y la granulometría se encuentra dentro del rango de las especificaciones según la norma, lo que demuestra que la evaluación de las dos metodología presentan resultados similares de diagnóstico de las fallas presentes, tal es así que Salazar (2019), en su trabajo de investigación determinó la evaluación de las características del estado del pavimento flexible en la citada vía, la metodología que utilizo fue un diseño no experimental, descriptiva, la cual lo complemento con el método PCI, además para ello utilizo 75 unidades de muestreo, entre los resultados obtuvo que las fallas que más frecuencia presentan y que inciden en el estado del pavimento flexible de la Avenida Independencia, la calificación del pavimento es regular, con un promedio de PCI 49,09%, para el mejoramiento de la vía se necesita un presupuesto aproximado de S/. 176,076.41, llegando a la conclusión que las principales fallas que presenta el pavimento flexible tiene incidencia con severidad baja y media, lo cual sirve para el mantenimiento del pavimento flexible de la Avenida Independencia, Cajamarca.

En la investigación de Sierra y Rivas(2016), se pudo realizar una comparación de las mismas metodologias de evaluación: tanto el PCI como VIZIR y determinaron también las fallas estructurales y superficiales como se realiza en la presente tesis, y como puede observar el tipo de daño que más se presenta en la calzada es el Parcheo y Acometidas de Servicios con un porcentaje de 5.673% del área total (19,500m2) con un porcentaje de 47.31 % de área de daños totales (2,338.34m2). Y el tipo de daño menos representativo es el Abultamientos y Hundimientos con un porcentaje de 0.031% en el área total y con un porcentaje de 0.26% del área de daños totales, así mismo Vásquez (2018), en su trabajo de investigación tuvo como objetivo evaluar la condición de las calles del sector Santa Rosa de la ciudad de Bambamarca para lo cual utilizo el método de Índice de Condición del Pavimento (PCI), la metodología que empleo fue un diseño no experimental y de tipo descriptiva además de seguir la metodología del método PCI, todo esto lo realizo utilizando formatos y visitas visuales, la población lo delimito del sector Santa Rosa de la ciudad de Bambamarca y la muestra lo tomo como 12 jirones de las cuales obtuvo 39 muestras, el resultado que obtuvo fue que principales patologías fueron parcheo grande, pulimiento de agregados, grieta lineal, descascaramiento de junta, otros, los cuales tuvieron un porcentaje de 42,30%, 12,70%, 11,90%, 7,00% y 13,30% respectivamente. Llegando a la conclusión que estado del pavimento es regular con un valor PCI de 43,92. Por lo que al igual que los autores Sierra y Rivas hallan similares fallas en la superficie según el método PCI.

El porcentaje del contenido de asfalto de la muestra 01 y 02, se considera aceptable por encontrarse en gradación OPTIMA y dentro del rango de diseños de mezclas asfálticas y por tener un mayor porcentaje de material bituminoso y considerándose la curva granulométrica dentro del rango según las especificaciones (M - 01 = 6.570% y M - 02 = 6.420%, de acuerdo a Tineo (2019) en su trabajo de investigación, en donde estudio los tipos de fallas del estado y condiciones del pavimento asfáltico de la Av. Canto Grande aplicando los métodos PCI y VIZIR, para realizar alternativas de mantenimiento para alargar la vida de operacionalidad del citado pavimento, para ello utilizó una metodología con un tipo de investigación aplicada y un

diseño de investigación no experimental enfoque cuantitativo, la población que estudio fueron las vías colectoras del distrito de san Juan de Lurigancho, para ello lo secciono en 142 tramos de 35 metros cada uno, analizando las fallas en las calzadas derecha e izquierda, con lo cual obtuvo como resultado que las distintas metodologías con un índice de 39,40 para el PCI y para el deterioro superficial una puntuación promedio de 3 para VIZIR y para la calzada derecha obtuvo un índice promedio de 46,90 para el PCI y un deterioro superficial con una puntuación de 3 para VIZIR, llegando a la conclusión las metodologías como el PCI y VIZIR son significantes para la evaluación de los pavimentos asfálticos de distintos tramos de carreteras.

De la investigación Vásquez (2018), respecto a su compracion de las dos metodologías se puede referenciar también que las utiliza para su evaluación superficial mas no la estructura del pavimento a diferencia de mi investigación ya que se realizó el el ensayo de lavado de asfalto y análisis granulométrico, los cuales presentan los resultados finalizados en ambas metodologías, donde indican la cantidad de material bituminoso que se encontraba en la mezcla asfáltica, considerando el diseño asfaltico; así mismo, los resultados se encuentran, del cual realizaron el ensayo de la muestra 01 y 02, como ejemplo de la muestra 01 se procede con el peso de la mezcla (gramos) 859.50gr y el Peso Lavado 803.00gr con una diferencia de 56.50gr. con un resultado de porcentaje de contenido asfaltico 6.570%, del mismo modo Rivas y Sierra (2016) en su trabajo de investigación, el cual tuvo como objetivo aplicar las metodologías VIZIR (Francesa) y PCI (Americana) para determinar las fallas presentes en el pavimento asfaltico, utilizando para ello una metodología con un tipo de investigación aplicada y un diseño de investigación no experimental, descriptivo cuantitativo con corte transversal, para ello también realizaron los estudios de la inspección de todas las fallas en el mencionado tramo de pavimento y obtuvieron como resultado que el PCI tuvo una calificación promedio para el tramo de 89,00 y con la metodología VIZIR tuvo una calificación promedio de 2, con lo cual llegaron a la conclusión que es factible aplicar las metodologías PCI y VIZIR, obteniendo un estado del pavimento asfaltico de excelente y bueno respectivamente.

V. CONCLUSIONES

El estado y el análisis comparativo del pavimento asfaltico de la ruta nacional PE 3N del kilómetro 574+00 al 577+00 de la ciudad de Huaraz, presento un método PCI, para la calzada de 3+00.00 km se obtuvo una clasificación BUENA con un valor de 62.19 según el PCI, y una calificación MARGINAL para el método VIZIR, del cual se obtuvo un valor del índice de deterioro superficial (Is) de 3.633. Al determinar la comparación existente de ambas metodologías se llegó a la conclusión que por la metodología PCI el pavimento flexible se encuentra en una condición BUENA con un porcentaje del 71.428% y por el método VIZIR el pavimento se encuentra en un estado BUENO con un porcentaje del 61.91%.

La evaluación de todos los tipos de daños que se presentan en el pavimento flexible, a través de la metodología PCI, determinó el promedio total del índice de condiciones del pavimento (PCI) que es 62 que define el estado del pavimento como BUENO, donde se presentaron a las fallas de parcheo y acometidas de servicios y piel de cocodrilo con las fallas de mayor frecuencia, los cuales presentaron indicadores de 47.31% y 19.97% respectivamente.

La evaluación de todos los tipos de daños que se presentan en el pavimento flexible, a través de metodología VIZIR, evidencio un valor promedio total del índice de Deterioro Superficial (Is) que es 4 que define el estado del pavimento como REGULAR. De acuerdo al ensayo lavado asfaltico se puede observar que el pavimento se encuentra en una gradación OPTIMA de 6.50% de porcentaje de asfaltico y la granulometría se encuentra dentro del rango de las especificaciones según la norma.

Los análisis de datos y evaluaciones realizadas en el pavimento estudiado, a través del método PCI, se propuso para tramos en estado "bueno", realizar trabajos de Sellado de fisuras de grietas en (calzadas y bermas) y Parchado superficial en calzada o sellado de

grietas. En los relacionado a los tramos en estado de "regular" y "pobre", se debe utilizar trabajos de Parchado profundo en calzada, Parchado profundo de bermas con tratamiento asfáltico y Sellos asfálticos. Asimismo, en los tramos en estado de "muy pobre" y "colapsado", se debe utilizar trabajos de Recapeos asfálticos, Fresado de carpeta asfáltica Reconformación de base granular en bermas reconstrucción o reciclado en frío

VI. RECOMENDACIONES

Para las nuevas investigaciones que se enfocan en la metodología del PCI, se presenta algunas recomendaciones en base a los resultados obtenidos:

Se recomienda tomar las fotografías en horas del día a pleno sol para que se puedan distinguir las imperfecciones (fallas) que se presentan en el pavimento del tramo de la zona en estudio.

Utilizar el método PCI para la evaluación de los pavimentos rígidos, utilizando para ello todas las etapas técnicas que se rigen para llevar a cabo las inspecciones superficiales de las fallas presentes en el pavimento.

Aplicar el método PCI en la evaluación de las fallas superficiales que se presentan en el pavimento rígido de la zona que será sometida a evaluación, debido a que en comparación con el método VIZIR, el método PCI presenta mayor amplitud para la evaluación del tramo de carretera a estudiar.

Mejorar el estado de las vías, realizando un plan de limpieza en los sistemas de drenaje, asimismo colocar cunetas con el fin de que las aguas pluviales puedan seguir su curso adecuado eficientemente, debido a que el agua es uno de los factores que deterioran la estructura del pavimento y debilitan las bermas del pavimento flexible.

VII.REFERENCIAS BIBLIOGRÁFICAS

- Amaya, A. & Rojas, E. (2017). Análisis comparativo entre metodologías VIZIR y PCI para la auscultación visual de pavimentos flexibles en la ciudad de Bogotá. (Tesis de Pregrado). Universidad Santo Tomás. Bogotá-Colombia.
- Armijos, C. (2009). Evaluación Superficial de Algunas Calles de la Ciudad de Loja.
- ASTM D 6433-03. (2007). Standard Practice for Roads and Parking Lots Pavement Condition Index Surveys. Pensilvania
- Baque, B. (2020). Evaluación del estado del pavimento flexible mediante el método del PCI de la carretera puerto-aeropuerto (Tramo II), Manta. Provincia de Manabí.

 Dominio de las Ciencias, 2020 (Artículo Científico), vol. 6, no 2, p. 203-228.

 Recuperado de https://scholar.google.es/scholar?hl=es&as_sdt=0%2C5&q=Evaluaci%C3%B3 n+del+estado+del++pavimento+flexible+mediante+el+m%C3%A9todo+PCI+de+la+carretera+puerto+%E2%80%93+aeropuerto+%28Tramo+II%29%2C+M anta.+Provincia+de+Manab%C3%AD%2C+&btnG=
- Condori, P. &Callohuanca, N. (2015). Evaluación y comparación de la condición superficial del pavimento a través de la aplicación de las metodologías PCI y VIZIR en el pavimento flexible de la Avenida Huancané (KM 0+000 3+000) de la ciudad de Juliaca 2013. (Tesis de Pregrado). Universidad Andina Néstor Cáceres Velásquez, Puno-Perú.
- Darío, W. & Fuentes, L. (2015). *Evaluación de pavimentos flexibles*. (2da edición), España: EAE.

- Dávila, D., Huangal, N. & Salazar, W. (2017). Aplicación del método del PCI en la evaluación superficial del pavimento rígido de la vía Canal de la Avenida Chiclayo distrito José Leonardo Ortiz provincia de Chiclayo periodo 2016 (Tesis de Maestría) Universidad Pedro Ruiz Gallo. Lambayeque, Perú. Recuperado de http://repositorio.unprg.edu.pe/handle/UNPRG/5855
- Espinoza, D. & Liñan, M. (2018). Evaluación del pavimento rígido aplicando el método PCI en el Jirón Augusto B. Leguía, Distrito Independencia, Huaraz, 2018. (Tesis de pregrado) Universidad Cesar Vallejo. Huaraz, Perú. Recuperado de http://repositorio.ucv.edu.pe/bitstream/handle/20.500.12692/26697/Espinoza_L DJ-Li%C3%B1%C3%A1n_VMT.pdf?sequence=4&isAllowed=y
- Hernández, R., Fernández, C., & Baptista, P. (2014). *Metodología de la investigación*. Editorial: McGraw Hill Education, México, sexta edición compressed.
- Ivellise, T. (2019). Evaluación del estado del pavimento asfáltico aplicando los métodos pci y vizir para proponer alternativas de mantenimiento av. canto grande. Recuperado de
- Manual. Suelos, Geología, Geotecnia y Pavimentos, La sección de Suelos y Pavimentos establecido por el reglamento Nacional de Gestión de Infraestructura Vial aprobado por DS, 2013, no 034-2008. Recuperado de https://scholar.google.es/scholar?hl=es&as_sdt=0%2C5&q=MTC+manual+de+ carreteras+suelos%2C+geolog%C3%ADa%2C+geotecnia+y+pavimentos+secc i%C3%B3n+suelos+y+pavimentos+r.d.+n%C2%B0+10-2014-mtc%2F14&btnG=
- Mendoza, A. (2019). Evaluación del estado del pavimento rígido mediante la metodología del PCI de la avenida La Paz., (Tesis de pregrado) Universidad

- Nacional de Cajamarca. Cajamarca, Perú. Recuperado de http://repositorio.unc.edu.pe/handle/UNC/3656
- Menéndez, J. (2009). *Ingeniería de Pavimentos Materiales, Diseño y Conservación*. Lima, Perú: ICG.
- Montoya, P. (2016) Evaluación de las patologías del pavimento flexible de la Av.

 Argentina Nuevo Chimbote Santa, realizado en Nuevo Chimbote Perú.

 Recuperado de https://scholar.google.es/scholar?hl=es&as_sdt=0%2C5&q=Evaluaci%C3%B3 n+de+las+patolog%C3%ADas+del+pavimento+flexible+de+la+Av.+Argentina +%E2%80%93+Nuevo+Chimbote+&btnG=
- Montejo, A. (2017). *Ingeniería de pavimentos. Fundamentos, estudios básicos y diseño.* (3era edición). Tomo I. Colombia: UCC.
- Morales, J. (2005). *Técnicas de rehabilitación de pavimentos de concreto utilizando Sobre capas de refuerzo*. (Tesis de pregrado), Universidad de Piura, Piura, Perú .Recuperado de https://pirhua.udep.edu.pe/bitstream/handle/11042/1343/ICI 129.pdf
- MTC. (2014). Glosario de Términos de Uso Frecuente en Proyectos de Infraestructura. Lima.
- Orozco, J. (2004). Pavement evaluation system. Version 2.0. Mexico: Secretary of Communications and Transportation, Mexican Institute of Transportation.
- Rivas, A., Sierra, C. (2016). Aplicación y comparación de las diferentes metodologías de diagnóstico para la conservación y mantenimiento del tramo PR 00+000 –

- PR 01+020 de la vía al llano (DG 78 Bis Sur Calle 84 Sur) en la UPZ Yomasa. (Tesis de Pregrado). Universidad Católica de Colombia, Bogotá-Colombia.
- Rodriguez, Y. (2017). Evaluación de la condición operacional del pavimento rígido, aplicando el método del pavement condition index (PCI), en las pistas del barrio el Triunfo, distrito de Carhuaz, provincia de Carhuaz, Región Ancash,, Diciembre 2015 (Tesis de pregrado) Universidad Católica los Ángeles Chimbote. Cajamarca, Perú. Recuperado de http://repositorio.uladech.edu.pe/bitstream/handle/123456789/699/condicion_o peracional rodriguez minaya yony edwin.pdf?sequence=1&isallowed=y
- Salazar, C. (2019). Evaluación superficial del pavimento flexible utilizando el método PCI contrastado con la guía PMBOK en la Avenida Independencia, Cajamarca 2017. (Tesis de pregrado) Universidad Privada del Norte. Cajamarca, Perú. Recuperado de https://repositorio.upn.edu.pe/handle/11537/23992
- Varela, A. (2018). Evaluación del estado de conservación de las calles del sector Santa Rosa de la ciudad de Bambamarca utilizando los métodos de índice de conservación del pavimento (PCI) y VIZIR.. (Tesis de pregrado) Universidad Nacional de Cajamarca. Cajamarca, Perú. Recuperado de https://scholar.google.es/scholar?hl=es&as_sdt=0%2C5&q=Evaluaci%C3%B3 n+del+estado+de+conservaci%C3%B3n+de+las+calles+del+sector+Santa+Ros a+de+la+ciudad+de+Bambamarca+utilizando+los+m%C3%A9todos+de+%C3%ADndice+de+conservaci%C3%B3n+del+pavimento+%28PCI%29+y+VIZIR &btnG=
- Vásquez, A. (2018). Evaluación del estado de conservación de las calles del sector Santa Rosa de la ciudad de Bambamarca utilizando los métodos de índice de conservación del pavimento (PCI) y VIZIR.. (Tesis de pregrado) Universidad

Nacional de Cajamarca. Cajamarca, Perú. Recuperado de https://scholar.google.es/scholar?hl=es&as_sdt=0%2C5&q=Evaluaci%C3%B3 n+del+estado+de+conservaci%C3%B3n+de+las+calles+del+sector+Santa+Ros a+de+la+ciudad+de+Bambamarca+utilizando+los+m%C3%A9todos+de+%C3%ADndice+de+conservaci%C3%B3n+del+pavimento+%28PCI%29+y+VIZIR &btnG=

Vásquez, L. (2002). Pavement Condition Index (PCI) para pavimentos asfálticos de concreto en carreteras. Manizales, Colombia. Recuperado de https://scholar.google.es/scholar?hl=es&as_sdt=0%2C5&q=+V%C3%A1squez %2C+L.+%282002%29.+Pavement+Condition+Index+%28PCI%29+para+pav imentos+asf%C3%A1lticos+de+concreto+en+carreteras.+Manizales%2C+Colombia&btnG=

AGRADECIMIENTO

Agradezco a Dios, por darme la fuerza y salud para poder resolver los problemas que se presentaron a lo largo de esta tesis, para que este trabajo pudiera ser concluido.

A nuestra alma mater la Universidad San Pedro por el tiempo de formación profesional.

Agradezco a mis padres y familia por el apoyo incondicional, la comprensión, la bondad y paciencia que me brindaron en el transcurso de mi formación profesional. Por luchar día a día para darme una buena educación e impulsarme a que cumpliera mis metas.

VIII. ANEXOS Y APÉNDICE

Anexo A 1. Operatividad del método PCI

> Software EvalPav Carreteras para el método PCI (Índice de condiciones del Pavimento)

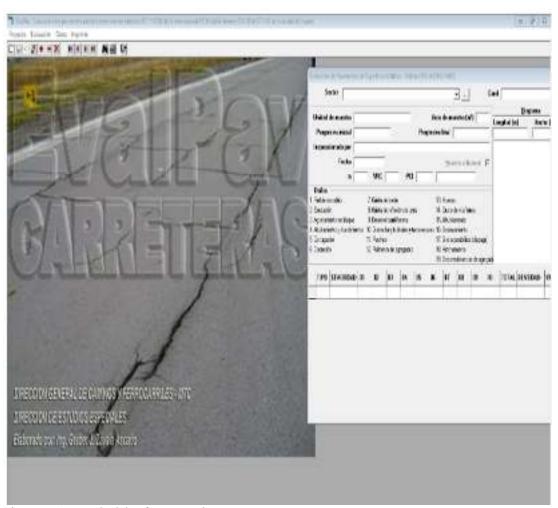


Figura A 1. Portada del software EvalPav carreteras.

Fuente: Elaboración propia, basado en la información tecnológica.

	TIPO	SEVERIDA	×	Y	LONGITUD	ANCHO	AREA
_	1	L	4	32	1	1	1
•	10	М	3	15	10	0	10
	11	Н	2	25	5	4	20
	11	L	3	8	1	0.9	0.9
	11	М	4	37	2	1	2
	16	М	3	34	3	2	6
	16	М	4	7	6	0.6	3.6
	3	М	1	14	7	1.5	10.5

Figura A 2. Cálculo del daño, para el método PCI y su ubicación de los daños. Fuente: Elaboración propia, basado en la información tecnológica.

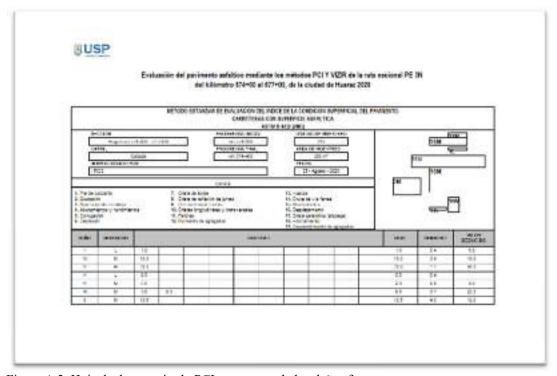


Figura A 3. Hoja de datos, método PCI y esquema de los daños formato. Fuente: Elaboración propia, basado en la información tecnológica.

Anexo B 1. Análisis de resultados (método PCI)

			METODO	ESTANDAR DE E	CARRETERAS CO			L DEL PAVIN	енто		
CA	Progressive 5 Refus. 6 PEDCEMBADO P CO FWILLIACION	eltrade ont	7+000	PROC	PERAM HICAN, am 574-000 PERAM PINAL NO 574-040	AME	AD DE MURETHEO OCH A DE MURETHEO 200 IN ¹ SA A Agrico 2020	ж			
1. Plat the c 2. Exydecid 3. Agrietom 4. Abstanti 5. Corruge 6. Degreesid	in Hermony Droque Arthur y Humblesser Sites	-	8. Grade 9. Despr 16. Grade 11. Parce	CAÑO - de forma - de religión de su ser cami. / terma - la langiturinales y 1 ec moto de agregacio.	San Parava Salan	15. Arusti 15. Despis 17. Gress 16. Hindra	de via forme prosetto partiaret: paradiódica (elippoge)				
DANG	REVERTENO				CANTIDAD				TOTAL	DENGOAD	DEDUC
17	**	.11.1						1	11.1	4.1	47.0
. 2	91.	8.0							9.9	3.8	14.0

			METODO ES	TANDAR DE EVALUACION DEL INI CARRETERAS CO ASTN			DEL PAVIME	то		
30	COON			PROGRESIM INCIAL	UNIO	OPERATED	1100			
1	Progresive 5	74+001 - 577	OSS	tos 574+540	1	002	TU			
EA	MRE.			PROGRESIVA FAVAL	AHEA	DE MUESTREID				
1	representation to the first of the first of	atxinle		Me 87e+080	Page 1	300 M ₂	- 111			
4000	PECCONNOC P	OR			PECH		- 111			
100	30				35	-Agoato - 3030			11M	-7
				DAROS						
Periodo o	let .			n borden n replacation de purman l comit / berning	13. Humon 14. Cross of 15. Altumbia	in vite formali.	H			
	ventu eri bitique lentre y hundmen ison Vi	top	tt. Critica i tt. Paroteo	ongfudinistes y transverseises	16. Despisa 17. Grieta p 16. HINCHAR	amento antinèna (sispange)		14		
pales	GEVERNOAD			CANTIGAD				TOTAL	DEMSEAD	WALDR
	W	21.0	1				-	21.0	81	47.0
-11		10.0						200	11.8	34.0
. 3	L	0.9						6.8	37	5.0

			METODO EST			FICE ASPAUT		AVMENTO		
840	COOM		- 57	PROGRESIVA NICIAL		UNIDAD DE M	UESTREO			
	Progression 5	14+900 - 677	100	am 874+950		000				
GA.	JAMEL.	OLE PORT STORY		PROGRESIVA FINAL		AREA DE MUE	BITREO			
		niceOit		km 574+130		29t m	6			
840	SPECCIONADO P	049				FEDIA				
HO	OC DO					21 - Agosto	-3000			10
				ovAcs					91L	
	Get Noestjo en bliogue sentos y humilionism 1950	**	8. Destinal 19. Grades in 11. Parcheo	oorde velfande de jurides sertif / berme egitationises y transversables de egropados	94.5 95.7 97.1 98.7	Hueccie Orace de «la faci Anadamento Despisamiento Orieto perstiólico Enchamento Despirendimiento	(réponge)			
DANG	SEVERIDAD			CARTE	MD:			HOTAL.	SENSOND	DEDUCIDO
- 11		7.5						7.5	2.9	8.0
7		7.6						7.5	2.8	8.0

			MET000 22		CICE DE LA COMBICIO DE SUPERFICIE ASFAL M D 4433 (2003)		PAVIMENTO		
96	DOTON			PROGRESAN MICIAL	UMBADDE	MUESTREO			
	Progressus 5	M+000 -577	+300	8th 574×130		04			
CA	AUG.			PROGRESIVA FINAL	AREA DE M	St. St. L. St. St. Land B. St.	17375		
-		aliada on		See Street 600		in.	314		
	RPECCIONADO PE				FECHA	Me: 2010			
1100	100				40.700	ME - 20400			
				DANOS					
	ón Highto en bloque Hindos y Turnolimien Oxfor		S. Descrives 98. Grietau I 95. Parches	refleción de juntes contil i berna cogludinates y santeversame	13. Huncos 14. Cruzo de via 1 15. Anuelomento 16. Despisamento 17. Ordela paratici 18. Hindramento 18. Desprendinse	to Kar (Hippeye)		200	
DARO	SEMERONS			CHIMOLO			1914	-	DEDUCTO
. 1		34.0					24.0	9.2	61.0
1.5	M	212					21.0	8.1	47.0
10	M	12.8					12.6	4.8	11.0

					CARRETERAS COM ASTM	0 6423 (2003)					
.90	DOION			12.000	RESINA PICIAL	UNE	DANTEE JAN SO CAL			úc	
	Progressive Si	4+000 - 1774	1000	- Automatical	re: \$74+160		965				
C	ARL			production of the last	RESINA FINAL	ARE	A DE MUESTREO				
-		IIIMO			m-674+000	Trans.	260 64				
-	EPECCIONADO PO	JRI.				FEC	A STATE OF THE PARTY OF THE PAR				
160	00					- 1	1 - Agosto - 2021				
				DAROS				918			
	on viento en Dioque vertos y fundimien osto	ten	B. Desrive 18, Grissis I 11, Parcheo	a reflection de parti I clardi / berma longitudi ruins y tra	7-3-1	15. Aftenti 16. Despie 17. Green 18. HENDS	ito via forces errianto comanto perotolico (signago)		1		
DIMID	DEVERGALE				CANTEIAD				TOTAL	DENSEAD	MATCH
10	м	10.0					A 1		30.0	2.9	30.0
	- 16	29.0							25.6	26	50.0
11											

CRIME 10

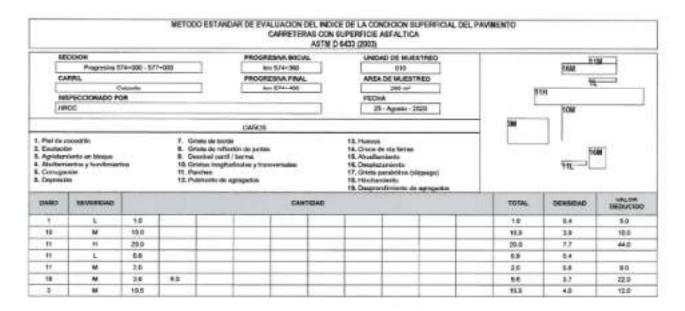
			METODO EST	CARRETERAS CO	NGE DÉ LA COMENCIÓN SUPERFICIAL DES, P N SUPERFICIE ASPALTICA I D 6433 (2003)	OTHERWISE		
54	CCHON	V 194.00 In 19	00 N Te 5	PROGRESNA INICIAL	UNDAD DE MUESTREO		91	M .
100	Progresive S	14+000-577	1000	km 674+200	5000	1.		
CA	MINE.		100	PROGRESIVA FINAL	AREA OF MUESTRED			
	- 0	eluncte:		BIT SF6+048	260 m²			
(and only	SPECCIONADO P	CHE			FECHA			
NA	HOC				25 Aposto 2000	1.		
				DAÁDS				
	ón miando en tiloque sentija y fundersen ición	60K	S. Deerwell: 16. Grans to 15. Parchis	ovide reflection de jurisse gant i dema gant i dema gant i demande de agregacios	13. Hacoco 14. Citure de viz formes 15. Ahueltaniento 16. Ossplenamiento 17. Ginels persocioles (ENgospo) 18. Ninchamiento 18. Desprendimiento de agregados			
guillo :	SEVENIEN			-		TOTAL.	DEVENO.	DEDUCED
11	- 10	8.0				8.0	8.1	18.0

CANADAMENT OF MELBO

-	COICN			PROGRESON MICH.	0 6433 (2003) UNIDAD DE MUESTREO			
200	Progressys S	16+000 - 677	-000	km 574+240	007			,
C4	ARI.	1410001-001		PROGRESIVA FINAL	AREA DE MUESTINEO			1
- 1	12.22	wintedni		km 574-280	200.107			
94	SPECCIONADO P				FEDM			
140	00	777			25 - Agreeic - 2020			
				DARCIE				
	on Gendo en bioque aprilie y hundinson Grie	000	8. Deartvo 10. Grietas o 11. Parches	ponde milliosido de juntios cartil / bastras augiturinales y transcensales de agregados	12. Aluscos 14. Chipo de sia famas 15. Afuellamento 16. Origilazamento 15. Pischenierio 16. Desprendimento de agrega	0ec		
DANO	BEVERGAD			CANTERES	W. MENING CO.		DEMOGRAD	DEBAGDO

ALMANAGE NO SELECT

- 86	IOCION	CO. Contractor	PROGRESIVA INICIAL	UNIDAD DE MUESTREO			
553	Progressia 6	Fe+000 - 677+000	icm 574-098	809			
C	WYPE.	STORY INCOME.	PRIOGRESIVA PRIAL	AREA DE MUESTREO			
31.0	0	attiens	Am 674-939	560 m²			
40000	SPECIONADO PI	OM	T. HI WALLEY IN	FECHA			
	ACC.			25 - Agosto - 2020	1		
			DWIOS				
. Per de i		8.0	ritata de borde ritata de reflexión de juntas comined carrill Comma ritatos incultacimales y ingressenación.	53. Puesce 54. Cruce de via ferma 15. Avuellamento			
. Agrictor		11.15	sidnestic de agregative	66. Desplantamento 17. Grata periddikia Crispagei 68. Handwarenen 18. Desprandimento de agregados	2	•	
. Agrietan . Abultum . Conuga	roon.	11.15	prúlyed	17. Greta perabilitia (nippager) 18. Histohermento	TOTAL.	DENSEAD	WALON


CHEC 10

			METODO EST	ANDAR DE EVALUACION CARRETE	RAS CON	SEDE LA COM SUPERFICIE A 6433 (2003)		ERFICIAL DEL	PAVIMENTO		
56	CCION			PROGRESIVA INC	ML.	UNIDA	NO DE MUEST	960		318	OM
	Programiya 17	4+000 - 677	H000	8in \$74+300			0.00			200	
CA	RRL.			PROGRESIVA FW	NL.	AREA	DE MUERTRE	EG D			
- Indeed	Complete State (Septiment State (Septime	Markin.		Am 874-960		- Projection	200 (44				
400	PECCHANADO PE	OPE .		Y 17		PECH	attends broad famoritation	in the same of			
H	oc .	92				25	-Agosto - 202	8			
				DANGE							
Aladon	in Nento en bioque entos y hunderien sión	DA.	Description Description Description Participation	jerse orfeetin de juntes gate i tuorna ophidinalisi y transversales, de agregados		18, Hinchan	e via ferma monto projento anabólica (silgo	177	104,200	1	
DARO	BEVERRAD			CA	MIDAD				YOUR	DEMOKRAD	DEDUCED
10	1.	8.0							5.0	1.6	1.00
10	14	10.0							10.0	10	10.0
77	14	120							12.0	4.6	- 34.0
1	- 9	5.2							5.2	2.0	6.0

CARCOLINA SAN METERS

CHECK 10

			METODO	ESTANDAR DE		DICE DE LA CONDICI IN SUPERFICIE ASFA I D 6433 (2003)	mile to any last of the same wife	DES. PAVA	ENTO		
50	CCION			PA.	OGRESIVA INICIAL	UNIDAD DE	MUESTREO			3.101	
	Programma 57	74+000 - 57	7+000		km 574+400		H1				
CA	RFIL.			200	OGRESIVA FINAL	AREA DE M	NUESTREO			CM:	
	0	alcode		- 1	Im 674+440	29	0 m²	518			_
200701	SPECCIONAGO PO	OR		_		FECINA.	Maria Santa	110			
146	cc					26 - Age	sks - 200m	-			_
				DA	Aos						
t, Plet de c t, fixudaci t, Agrietan t, Atsultum t, Corruge t, Organis	ón Nentz en blörque wintre y frundinsen ridn	tra	6. Grans 9. Death 13. Grans 11. Parch		y Marsoomakes	13. Huecon 14. Cruce de vis 15. Anustament 18. Despisarrier 17. Griete periodi 18. Hindhamantu 18. Despisarriera	ts Ros (séponge)			Ħ	P
DARC!	MEVERNOAD				CANTIDAD				101AL	DEMINION	MUCH
tt		6.0	900						36.0	13.0	84.0
11.	- 4	0.6							0.6	0.2	
16	M	8.0							8.6	23	17.0

CHEC 16

			METODO ES	TANDAR DE EVALUACIÓN DEL I CARRETERAS O AST		E ASPALTICA		PAVIMENTO		
80	CODA			PROGRESIVA INICIAL	U	NEAD DE MUE	STREO			
	Progressio 5	74+000 - 577	+000	No. 674+623		854				
CA	APRIL.			PROGRESIVA FINAL	A	MEADE MUES!	TREO			
		ekrete -		See Sife-Orde		300				
194	PECCIONADO P	OPE .		12.7	m	CHA	C. 1867			
100	oc .	2/2/				5% - Agosto - 2	629	= E		
				DARCS					10	
4. ADMITMEN	lei Henti wybingue Hentin y hunderien Urbe		S. Desmiel 18. Gregos o 11. Parcheo	bonde reflexion de partire carril / te ma ngitudinales y francomsules de agregados	16. Doc 17. Gra 18. Pin 18. Dec	rie de viu forma ellamento plazamento de periodicio (si hierisento prendimento di	Occuped	TOW		
DARO	DEVERIDAD			CANTIEAC				701AL	DERISOAD	DEDUCED
16	L.	1.6						16	96	3.6
18	14	0.5						44	0.2	4.0

THURSDAY OF SELEC

			METODO EI	CARRETERAS CO	OCE DE LA CONDICION SUPERFICIAL DES N SUPERFICE ASFALTICA I D 6433 (2003)	PAVMENTO		
30	COOM			PROGRESIVA INCIAL	UNIDAD DE MUESTREO			
	Programma II	P#4900 - 57	77100C	ive 574+550	816			
CA	HEROE.			PROGRESIVA FINAL	ANIA DE MURITIMO			
	. 0	atrack		No SPAHEDE -	200 m²			
345	SPECICIONADIO PI	OR.			FECHA		200	-
100	IOC .				25 - Agents - 3520		311	
				ONFOR			911	
	on Hento en bloque Motto y hundineun Gibo	-	S. Deprive 10. Grietes I 11. Paretus	omfloetin de jurtae cartil / benna onghudinates y transversales.	12. Notice 14 via force 14. Church chi via force 15. Analizationers) 16. Dasplausrisjon 17. Orieta parabilita (slippings) 16. Nectoristica (slippings) 16. Nectoristica de apragantos	10.		
DARD	SAVERICAD			CANTIDAD		100AL	DENSIONS	WLOR
10	L	10.6				70.0	59	48
111	1.	8.0	24.0			10.0	12.5	18.0

MARKET STREET

			METODOES		ETERAS CO		CONDICION SUPERFICIAL DEL CIE ASFALTICA (1)	PAVIMENTO		
	DOIGH			PROGRESSW.	RICIAL.	L	HIDAD OF MUESTREO		- 2	
	Programme 57	N+900 - 577	+000	in the	900	- 1	916		31	L
CA	ARIL.			PROORESINA	PRIAL.		CONTROL WILLIAM			
- 1	0	HANDE		9m 574m	940	1.0	266.107			
	SPECCIONADIO PO	OR.		1.1			HOHA:			
100	CC					- E	25 - Agneto - 2020			
				DAÑOS					916	
	to Natio en Sisque entos y fignalment	NN.	S. Centrarel	reflectin de jurias I carri / borna cogitulinaisa y baraventa		18.00 16.00	ecos do de via fores setamento gospaniento ela pestolica (sissege)		N.	
Depres	ie:		12 Pulment	to do agragados		16.160	chamiento sprendeniento de agraçados	11L		
DAND	SEVERDAD				CANTIDAD			TOTAL	DEMINION	WEDWOOD
	1.	8.0						9.0	3.1	21.0
10	1.	4.2						4.0	1.0	
98	#	12						7.3	28	29.0
.11	L Mo						30.0	11.5	17.0	

			METODO E	CARRETERAS COM	ICE DE LA COMBICION SUPERFICIAL DEL I SUPERFICIE AGFALTICA D 6433 (2003)	PAVMENTO		
58	000M	عاطميانيو	50000	PROGRESIVA INCIAL	UNIDAD DE MUESTREO	1		
1	Programme 5	14+000 - E	77+000	RIN 5/149940	der	-		
CA	ARE.		100001	PROGRESIVA FINAL	AREA DE MURSITREO	100.		
30.0		alteria.		876 874-68D	282 84	910	-	
	PECCIONADO P	OR -			FECHA	374		
140	OÉ .				25 Aprello 2020		BIL.	
				DANOS				
Pari de cincodrile: Existination Existination Agricultura Agricultura Agricultura B. Circlas de valhación de jurias. Agricultura B. Circlas Circlas Circlas Circlas Circlas Circlas Circlas Circlas Circlas Circlas Circlas Circlas Circlas Circlas					83. Huocos 64. Gruce de via fema: 83. Acuelarisera: 81. Despissamiento: 87. Gresta peretrolina (plippage) 18. Histolinamento: 19. Despirovidimento de agriegados	130		
DANO				CANTIDAD		TUTAL.	DEMBEAD	WALOR DEDUCTOO
10	1	2.0				-12	1.0	
.11	1.	157	60			11.7	4.5	0.0
15	L 03					0.3	0.1	11

THE AND SEA PERSON

			METODO ES	TANDAR DE EVALUACION DEL IN CARRETERAS CO ASTA			PAVMENTO		
54	CCION			PROGRESIAN INCIAL	UNIDAD	DE MUNISTREO			
1	Prograwive 5	74+000-571	+008	km 574+680	Posterior	D16			7
.56	VVFR.			PROGRESSAR FIRMS	AREA D	DE MUCETRED			- 1
	0	witness :		8m 674+730	3 237 1377	360 m²			
- IM	SPECCIONADO P	OR		11 1100000000	FECHA	156 (2000)			
HE	icc	17.00			26-7	Agoren - 2020			
				pation					1
4. Abultim 6. Corrupa	en marks en bisque fertos y hyrdinsen poin	MA.	8. Desiring 19. Gretter II 11. Parches	caterior de proses card / berna rigilistration y transcension	13. Huteron 16. Ahushami 16. Eveptione 17. Grieta par	orde needle stolken (skomeger)		10	
6. Depress	ben		12 Pulment	u de sepregados	19. Hindhame	ono Interio de agropados	101.		
DAÑO	SEVERBAD			CARTIDAD	4		103AL	DENSMAN	VALOR DEDUCIDO
1	14	12.0					12.0	4.8	20.0
10	L	+.0					48	1.0	
- 7	M	10.0					18.0	3.9	9.0

			METODO ES		RETERAS CO	NOTE DE LA CO N SUPERFICIE I D 6433 (2003)	NOICION SUPERFICIAL ASFALTICA	DEL PAR	MENTO		
340	CCION			PROGRESSY	A BRICDAL	LINE	AD DE WAREFIED				
	Fragrensys S	14=800 - 571	1000	am 574	+720		018				
CA	WHI.			PROGRESM	A.PIBUAL	APE	A DE MUESTREO				
- 1		astra da		889 074	+700		280 ref			34.	7
	IPECCIONADO P	09				PRO	MA.				-
140	OC.					- 2	1505 : (800ph - 1				
				DARGS							
	ter manto on giogias sentra y fuuntimien soon	Non .	6. Elegatives 18. Granus II 11. Placebee	nefesión de juntos comi i burno orgitalmoles y Tanyven	ushine .	16, Alcusto 16, Etropia 17, Grieta 18, réndre	de via ferma. privento psinaletto paradolica (vilopaga)		101.		
DARO	SEVENEAD				CANTERAD				10/04	DENSIONE	MICH
.18	1.4	48				1			4.0	1.5	
- 11	L	12.0							12.0	44	9.0
- 1	1 64							6.4	2.9	2.9	

PERSONAL PROPERTY.

			METODO ESTA		NCE DE LA COMDICIO N SUPERFICIE ASFAL D 6403 (2003)		PAVMENTO		
0	PECCONN PECCOCNADO P PECCOCNADO P ROC	aitada	4000	PROGRESIVA SECUAL NES STATEM PROGRESIVA FRANC NES STATEMO	ARCA DE M	LESTREO In/			
4. Abillan	ide miento en bloque Haritos y hundiciser Kotin		S. Deartweiner	Reción de puntas HI / Derma Rudinales y Soneversates	13. Hueson 14. Course de viu le 15. Ahustimium 15. Despitationen 17. Grafe puntifié 18. Hirubanison 18. Despitationen	to to (nicquage)			L
DARO	SEVERIDAD			CANTOAO			TOTAL.	DENSIDAD	WALOR DROUGED
71	1.	80					4.2	31	4.0

THE REAL PROPERTY.

			#E1000E	CARRETERAS CO	DICE DE LA COMBICIÓN SUPERFICIAL D IN SUPERFICIE ABFALTICA I D 1423 (2015)	EL PAYN	ONIO.		
96	00004			PROGRESMA BICIAL	LAKDAD DE MURSTREO				
	Progresive II	14+900 - 577	4900	8m 874+000	021				
Ca	ANL.			PROGRESIVA FISHAL	AREA DE MUESTREO				
- 100	- 0	el) with	3	Are STANSAS	380 44				
180	SPECCIONADIO PI	OM			PECHA	11.5			
HIR	CC 33				24 - Agosto - 3000	17M			
				DAROS					
	lie Norte en Skague Writin y hundersen okle	èra.	8. Deprive 19. Gristee 11. Parute	ti reflesión de juntas di speti i berma Longitudinalios y transventatina	13. Pluriose 16. Cruco de vius bornus 15. Anuelamiento 16. Despharamento 17. Os less paradollos (elipospe) 16. Honoramento 16. Despharamento 16. Despharamen				
OFFICE	асистоло			CANTIDAD			701M.	оеновно	OKENICKHO OKENICKHO
17	7 M ST						5.7	2.2	19.0

ADMINISTRATION OF THE SAME

			METODO ES		NEE DE LA COMDICION S SUPERFICIE ABFALTICA D 6423 (2003)		KVIMENTO		
.80	оскон			PROGRESIVA INCIAL	UNDAD DE MUI	ESTREO		- 1	
	Programia 5	74+000 - 677+	000	tim STended	602			- 6	-
CA	HRIL.			PROGRESIVA FINAL	AREA DE MUES	mito			
100		wheatle		N/4 T24+680	283 of				
(945	SPECCIONADIO P	OFF			FECHA				
996	HDC.				21 - Agom - 2	2029			
				DARCO					
	ón. Nemto en blingum Henton y flunchmen coon	**	5. Dearmer of 10. Careton to 11. Parcheo	borde refereixe de juntas. sent i bernie hjalustratos y transversatias de agregados	53, Hueson 14, Cruza de via terme 18, Alsadamento 16, Desperatorio 17, Greta parabólica y 18, Hinchartano 18, Desperatorio de	Menati			
CHANG	MARON			CANTEAD			TOTAL	DENDIGAD	MALDE
. 11		84	T				8.4	3.2	9.0

CHEC 10

			METODO ES	CARRETERAS CO	DCE DE LA CONDICION SUPERFICIAL DE N SUPERFICIE ASPALTICA D 6433 (1885)	EL PAYMENTO		
1	Pogresse 5 PRE	/4-000 - SET	H000	PROGRESIVA INCIAL INI STATESO PROGRESIVA FINAL	UNIDAD DE MUESTRED 1031 APIEA DE MUESTRED			97
	SPECCIONADO P IGG	OH		im 574+005	263 of FECHA 26 - Agores - 2020			
				DARGO				
	on nearac-en boque teritos y nundantes tota	**	8. Descrived 10. Gradua I: 11. Parchico	saffardin de jumpe card / beima ngtudinales y tanayensides	tá. Hudose 14. Chuce do vie terras 15. Anuel komante 16. Resignaturemente 17. Griene paradicina (trippage) 18. Hincha mente 19. Cresponativnamia de agragados			
BARB	BEMERIDAD			CANTIDAD		TOTAL.	0010048	WLOR
17	L.	10.2				10.2	2.9	16.0

DESCRIPTION OF PARTY OF

			32.000	and the same of	CARRITERAS CO	NCE DE LA COMBICIÓN SUPERFICIA II SUPERFICIE ASFALTICA ID 6433 (2003)	COLL PASSE	Line		
. 55	COOCH	-0.V		PRO	GRESIVA INCIAL	UNEAD DE MUESTREO	144			
3.5	A COUNTY OF THE PARTY OF THE PA	24+050 - 177+6	000		hre-674+630	004	714			
C	MINUL.			PNO	GRESIVA FINAL	AREADE MUESTRED	711			
1.5		attreda			hrt 574+960	280 m²	- 10			
1606	RPECCIONADO P	CH				PEGHA.	- 11			
148	HCHC					26 - Agosto - 3000				
				DAN	06					
	uti ments an bloque sentos y hundense utilin	rton.	8. Coston 16. Coston 16. Coletos 11. Parche	in tooks to subserie ste s el cars / terma i orgindinales y e etc de a gregado	torowning	13. Human 14. Chara de de femas 15. Antopiamento 16. Despiamento 17. Grieta paraceica (aliquiga) 18. Heratamento 18. Despiamento de agragados				
BANO	BEVERENO				CANTEAD			TOTAL.	DENSIGAD	DEDUCKO
+	M NA				1	TIT	T	10.6	4.2	9.0

			METODO ES	CARRETERAS CON	ICE DE LA COMBICIÓN SUPERFICIAL DEL N SUPERFICIE ASFALTICA D 6433 (2001)	PAVMENTO		
98	IDDON			PROGRESIVA BICIAL	UNIDAD DE MUESTREO			91
L		P4=000 - 8774	900	Are S74+960	0.26			-
GA.	OUL	450		PROGRESIVA FINAL	ARKA DE MUESTREO			
100	The latest water to be a selected to	ielowis		N/S ST0+000	290 er*			
250.0	SPECCIONADO P	ON		VI - VI VI	FECHA			
110	100				26 - Agrain - 2020			
				DAROS				
F. Fiel de : 2. Fourier 3. Agrietar 4. Abutain 5. Cortuga 5. Copross	on Horto en blaque sertos y hundimier soon	***	8. Clearing 10. Cinetas in 11. Parcileo	borde software, de puntee cont / berrie sgitulinales y torreversales de sgregalice	12. Human 14. Physikemients 16. Physikemients 16. Displaciumento 17. Griera parabolica (slippoge) 18. Physikemiento de agragacina 18. Desprendimiento de agragacina			
DAÑO	SEVERIDAD			CANTIDAD		TOTAL	DENGIDAD	MALOR
7	L 83					1.3	3.6	8.0

UNICOS DE VELSOS

			METODO ESTA	CARRETERAS CO	ICE DE LA COMDICION SUPERFICIAL DEL PA I SUPERFICIE ASFALTICA D 6433 (2003)	IVIMENTO		
980	CCION			PROGRESIVA INICIAL	UNIOAD DE MUESTRED			
	Progressia f	T4+000 - 177+	900	Am Sittle Set	907			
CA	PIRE			PRIOGRESINA FINAL	AREA DE MUNISTRAD			
		alcords .		8m 576+080	260 er			
165	PECCIONADO P	OR			PEGNA			
HR	00	0.00		28 - Agosto - 2020				
				DAROS				
	in Vento en Siloque entos y hundinos odin	ma.	B. Deservel of	efecto de juntas anti-forma ghutinases y transvensams	13. Huncos 14. Druch de vie fertie 15. Artuellements 16. Despatianteres 17. Green paradotos (statomer) 18. Introduction (statomer) 19. Despatialmento 19. Despatialmento de agregados		54	
ONA	SEVEREME			CANTENE		3044	DERSIDAD	MEDINOR
1.	M 18.0					18.0	6.9	44.0

			METODO EST		CARRETERAS CON ASTW			are made a series on the form of	AVMENTO		
. 16	DCHOH .			PROGRESIVA INICIAL		UNIDAD DE MUESTRED		500			
- 12	Prograsiva C	74+000 S77+	000	in the	£76+080	029		110		111	
CA	ARS.			PROGRESIVA FINAL		AREA DE MURSTREO		iL i			
- 0		wante .		100							
86	SPECCIONADO PI	OM:			100	PECR	M.				
HE	cc					20	Agoetti - I	1000			
				DWKOL					1		
4. Abstraro	te Hento en bloque Rentos y frundenien Islan		8. Desrivel: 10. Gretes lo 81. Parchas	learde naflaceion de juntes carrii / becma ngitudinales y tier de agregados		16. Amelia 18. Dospita 17. Green 18. Hindre	de via ferree merit: obniento omistidico () mierito				
DARG	SEVEREAD				CANTEND				notal.	DENSIGNO	NA.OR DEDUCED
1		28.0							28,0	10.8	34.0
1	M	20.0					A		20.6	77.	49.0

			METODO ES	CARRETERAS CON	CE DE LA CONDICION SUPERFICIAL DEL SUPERFICIE ASFALTICA (943) (293)	PAVMENTO		
30	OCKON			PROGRESMA PROML	UNIDAD DE MUESTRACO			
	Progresso S	**+086 - S77	H000	No. 575+120	926	756		
CA	VIPIL.			PROGRESIVA FRAL	ANIXA DE MUISTREO	rtw		
	- 0	ASSASSIV		No. 575+160	280 m²			-
0.00	SPECCIONAGO PI	OM:			PROM	""		
HP	100				36 - Agueto - 2029			
				DAROS				
4. Abulten 5. Comuşu 6. Degresi	ón. Hariko en bloque Harikos y hundimten Hale	60a	16. Desrive 16. Orletac o 11. Painteen	refestio de juntos cardi i perma ongliutinatos y tienovernates	15. Huecos 14. Cruze de via henes 15. Ahudennierto 15. Destinamento 17. Consta produkta (plipsige) 18. Historiamento 18. Desprendimento de apregados		5	
SARO	SEVERSIASI		10146.	DENDIDAD	WALDH			
1.	· M	16.0				16.0	9.2	43.0
- 11	M	9.0				9.6	-8.7	20.0
3	H.	7.9				7.5	2.9	15.0

			METOD	XX ESTAN	man before make the contraction of the contraction	TERAS CON	CE DE LA CONDIC SUPERFICIE ASF (643) (2003)	ION SUPERFICIAL DI ALTICA	EL PAVMENTO		
GA BN	##CCEON					DOAL.	AREA DE	e MURATTRIO 000 MURATRIO 000 - 2000		101	
	0) Nerto en boque Iertos y hundinier odn	tra .	8. 06 9. De 19. Gri 11. Pa	serve cert irles longit	nitir de jurilen I i berma udiruies y Variuversuis		13. Pluscini 14. Cruce de vi 18. Altualismen 16. Despriusen 17. Gress parad 18. Pinchantes 19. Cesamendin	es unto (Ros (albosope)	VO.		
onto	ndo sereme					and the same	Miles Control Control		rom.	DEMONDE	DEDUCEDO
10	L	11.0	12.4						10.0	1.3	8.0

COREC TO

			METODO ES	TANDAR DE EVALUACIÓN DEL R CARRETERAS O AST		E ASFALTIC		AVMENTO		
54	CCION			PROGRESIVA INICIAL	La La	IDAD DE MU	CETTEO		- 10	14
12	Progressva EZY+000 - SZZ+000			NO 075-200	601					
CA	URRS.			PROGRESSA FINAL	APIEA DE MUESTREO					
100		olombi	1.0	km 675+549	L	260 m²	25000		306	
1,000	MECCIONADO P	ON			-	CHA			page .	11
141	100				1	26 - Agosto -	2100			
				DARCS						
	dn nento en tiloque tertire y hundimeet dels	toe	5. Descrive 16. Grietau i 15. Paroteo	oraficiator de partice Losvit-l termo congluzirados y transversales	18. Aha 18. Dea 17. Gran 18. Hiro	ne e de via llene; domento despreptio despreptions rements rendimento a	мерире			L
patio	SEVERBOAR			-				20100	-	DECUCIOS
10	146	19.0						10.0	7.8	25.0
17	w	7.6						7.6	2.6	23.0
3	M	12.0						10.0	46	19.0

METODO I	CARRETERAS CON	CE DE LA CONORCION SUPERFICIAL DEL I SUPERFICIE ABFALTICA 1 0433 (2003)	PAVMENTO				
SECCION	PROGRESIVA INCIA.	UNIDAD DE MURSTREO					
Programus 55x+900 - 979+000	NV: 675+243	822					
GANNE	PROGRESIVA FINAL	AREA DE MUSETRED					
Caesas	him 676-080	2000 mad					
HISPECCIONADO FOR		PECHA	TIR				
HROC		25 - Agosto - 2000		38			
	DAROS						
Conduction E. Grete Agreements on bioque 8. Ocen- Abutements y harderments 18. Ocen- Consignation 11. Facility Consignation 11. Facility	de tource de refrision de justice el cardi / borma L'impfluidhades y l'immyversains o ora-de agregation	13. Huecox 14. Cruse de via forme 15. Alcofamiento 15. Despisionnerto 17. Cristo paracións (litigosga) 18. Hochemberto 16. Original dinanto de aprepeidos					
DANO BENERONO	CANTENN		NUMA.	INNINI	DEDUCCOO		
13 H 82			12	6.1	19.0		

			METODO ES		IDICE DE LA COMDICION DN SUPERFICE ASFALT IN O 6413 (2002)		EL PAVIM	ENTO		
,85	CCION			PROGRESIVA BICIAL	UNIDAD DE E	STATE OF THE PARTY				
-	Programa S.	14-909 - 517	1000	PROCESS SAVA FINAL	AREA DE MU	the second second				
		oktovia.		fee \$75+000	260					
194	SPECIDIONADIO PI	SAVE AND THE REAL PROPERTY.			PEDIA					
VE	icic .				35 - Agost	o - 2920	- 1	. 1	H.	
	196.7			DAROS	- Color					
	on numer en broque dentre y hunderlant com	***	tă Gretas I 11. Pitcheo	controler or partie. controleros regitudiroses y Torresvertados.	13. Hatecon 14. Cruce de vice le 16. Araselamento 16. Desparación 17. Grista paración 18. Hacelamianto 18. Desprendimento	e (elgerge)	79	i	IM.	
DARO	SEVERDAD			Скитюю				TOTAL.	DENDERO	DEDUCED
**	M	2.0						21	0.8	96
19	**	0.1						0.2	6.1	18.0
+	M:	0.9						0.0	64	40

CRED-10

			METODO ES	TANDAR DE EVALUACIÓN DEL NO CARRETERAS CO ASTR		CIE ASFALTICA	RFICIAL DEL	PAYME	MTD		
56	COON			PROGRESIVA BUCIAL		PHEND DE MUESTR	MEG	1			
100	Progressive 31	W+900 - 577	1960	NAN ETTE+2900	- 10	629					
CA	RM.		0.00	PROGRESMA FINAL	,	INTER DE MUESTITE	0				
	- 0	eltrichi		A#I 575+030	- 10	200 m²	555 11				
840	IPECCIONADO PO	OR SHO				WCHA.				94	
188	IGG				- 1	26 - Agosto - 2020					
				DAÑOS				3			
	on nents en bisque sentos y hundmien don	***	8. Deserver 18. Ghirton to 11. Perchec	tionde reflexión de juride contri : biorris ngliutinaes y transversides de aprepatite	16. AP 16. De 17. Ge 18. Hs	ecue un de vio Perme undamiento spisapemento wa perstonos pripos sharriento sponstimento de ag		79	1	•	
SARO	DEVERSOR			CANTIDAD				-	TOTAL	DENDINOAD	BREDUCIDO
78	м	2.0							2.0	8.8	80
13	16	0.2							4.2	8.1	18.0
7	M	0.0							0.3	9.4	4.0

CRECTO
TEMPORATE PROTECTION
TO THE PROTECTION OF THE PROTECTION OF

			METODO E	CARRETERAS CO	DICE DE LA COMBICION SUPERFICIAL IN SUPERFICIE ASPALTICA I O 6433 (2003)	DEL PAVIMENTO		
04	OCION Progresiva II WHIL C SPECCIONADO PI	errota	77+030	PROGRESIVA BICUAL NO RESULTANA PROGRESIVA PRAS. HIS RESULTANA	UNIONO DE MUESTREO ONA AREA DE MUESTREO 200 Nº PEONA 26 - Agonto - 2003	TEN	NA.	
4. Abultan	ón nientu en skoque lentos y hyndinien ukkn	dovs.	S. Destrict 18 Grietas 11, Parches	e reflexión de juntas i carril / berma longitudinales y transversates	13. Huesse 14. Cruce de via foress 15. Advantamento 16. Despharmiento 17. Orieta paradidea (okspanje) 15. Hescharmento 16. Despharmiento de apragados.		111_	
DANO	SEVENSIAD			CANTELAD		1004	00100040	VALOR DEBUCIDO
7		1.8	71.3			12.6	4.6	36.3
. 18	1.	2.5	1			25	1.0	2.0
18	- 4	0.3:				9.5	0.1	21.0

			METODO ES	CARRETERAS CO	NCE DE LA CONDICION SUPERFICIAL DEL P N SUPERFICIE ASFALTICA I D 6403 (2000)	PAVMENTO		
38	CCION	and the same	a land to the	PROGRESIVA INCIAL	UNDAD DE WUESTINEO	1		
	Progresive 57	4-000 - 57	7+000	km 575-000	500			OMP.
CA	ARK.			PROGRESIVA FINAL	AREA DE MUESTREO	1194		
	- 6	STATE.		NW 175+400	200.99*			
940	IPECCIONADO PO	36			FECHA			
111	IOC .	-			29 - Agusto - 2500			
				DASCIS			91L	
Piet de la Exudece Agrietare Atsulture Confuga Depressi	ön nemic on blogue kerken y hundfreen cilin		S. Deentvo 10. Ginesia 11. Parches	e reflexión de juntas Cosmil harma Ungaludinases y Varevensases	C), Rivacoa de via ferme 16. Anualizarsento 16. Despasarmento 17. Girleta paracióna (alippage) 18. Minchanilvella 19. Desprendentento de agragados.			
DARO	BOMBIENO			Сметоко		1000.	DENSIDAD	VALOR
10:	. 14	4.0	7.0			11.0	12	18.0
11	L	4.2				4.8	1.9	3.0

			METODO ES	CARRETERAS CON	ICE DE LA CONDICION SUPERFICIAL DEL I SUPERFICIE ASFALTICA D 6433 (2603)	PAVMENTO		
94	COOM		Acces 14.5	PROGRESIVA INICIAL	LINEAD DE MUESTREO			
(E)	Progressive 5	74+000-877	+000	NO 375+440	087			
CA	MAIL		1000	PROGRESMA FINAL	AREA DE MUESTREGI			
12		ASSUREM		NR 575-480	2600 mp*	- 10000		
100	SPECCIONADO PI	OW	17.1		PROM	100.		- 1
1000	lot:				26 - Agosto - 2000	1		
				DARGE				
t. Pet de o 2 feminio 3. Agrictor 4. Abutaro 5. Comaga 6. Doprosi	ion vente en bloque lentos y hundimien cirio Sci		8. Deskivel- 16. Gristos II 15. Parcheo	tures militativ de pontes portir l'arres egitativate y francierosise e de agregados	15. Pluscon 15. Afractionator 15. Afractionator 16. Despitamiento 17. Conse presidente (etipogra) 16. Plant amiento 16. Compresidente de agregacion	1288		- 1
melen	DEVENDAD			CANTEND		YORK	DENIEDAD	WALCH DEDUCING
10	1	10				1,0	6.4	
10		12				1.2	9.8	
1		1.3				15	6.0	4.0

					ICE DE LA COMDICIÓN SUPERF I SUPERFICIE ASFALTICA D 6433 (2001)	CIAL DEL PAVIMENTO		
200	Programa S	74-900 - 57	7+000	PROGRESAN MICIAL No. 575488	UNIDAD DE MUESTRED			
G.A	APRIL C	stade		PROGRESAN FRAL NR 575-530	AREA DE MUESTREO			
Acres in	PEOCIONADO P CC	om			FECHA 28 - Agosto - 2020	1	31L]
				DAROS			90	
	fin Nortki ari bibajum Henton y humbinyan Octo		S. Descrive 18 Gretos 11 Forches	o reflecijn de juntas I carril i barriu Ongitutinans y transversane	13. Huscop 14. Cinco- de vie lemas 15. Ahustierment 14. Eventuarierie 17. Gress parbinosa (dispospi 18. Pinchamento de apreja 15. Zesponotimento de apreja	See		
paño	речетиме			CANTERAD		TOTAL	DEMOGRAS	MALDR
10	M	2.4	7.8			5.6	3.0	9.0
	11 L 80					8.0	27	6.0

SECURITY SECURITY SET

CHIC 10

			METODO E	CARRETERAS CON	ICE DE LA COMBICION SUPERFICIAL DEI I BUPERFICIE ASFALTICA D 4413 (2001)	PAVIMENTO			
56	COOK	K. Marina	TOTAL TO	PROGRESIVA INCIAL	LANDAD DE MUNISTRAD				
38	Programs to	74+000 - 01	7+008	N/s 979+098	048	3	316		
104	JOHN.	1000	W-000-1-	PROGRESIVA FINAL	AREA DE MUSERGO	#UT-0			
900	6	eizede		krs 575+688	280 117				
90	SPECCIONADO PI	O#	17		FECHA.				
101	100				26 - Agresia - 2020	-111			
				DARCE		16.			
	ria Hento en bibique Konton y humilmiton Older	ton .	8. Griefe d 9. Deprive 10. Orletes 11. Parches	De LOVISI De reflexión de juntaje el cardi i tentrale Dragitudhades y tentovorialiss O Octobrasjongadus	CA. Huscon 14. Chus de vir famili 15. Ahustannienis 16. Disclaranienis 17. Oricla carabotca (stapago) 15. Husbanienis 16. Disclaranienis de oprogratie		6		
DANG	SEVERDAD			CANTIGAD		TOTAL	CENDIGAD	VALOR	
+	4.	8.2				23	1.8	11.0	
15	L.	2.4	6.0			9.4	2.0	7.0	

CHEC 10

			METODO ESTA		NCE DE LA CONDICION SUPERF IN SUPERFICIE ASFALTICA ID 6433 (2003)	CIAL DEL PAVIMENTO			
- 14	COOM	Y4.17.00.00		PROGRESNA INICIAL	UNIDAD DE MUESTREC	2			
100	Progressia 5	74-900 - 877-	000	Nn 575-4600	041	3			
CA	WIRK.		30 1 10	PROGRESNA FINAL	AREA DE MUESTREO	3/2			200
		strede		km 075+040	284 m²	1			(17)
IN.	SPECCIONADO P	OR	199		FECHA	20)			
348	RCC			1.7	28 - Agosto - 2020]			
				pakos					
1. Per de: 3. Exyster 3. Agrictio 4. Abuton 8. Corrupe 6. Depress	on marrier on belegue section y frundimier scon	ns,	B. Distrivel or	Routin de jurieu pris / tuinma phubrains, y teansumesalma	15. Humos 14. Cruce de via forme 15. Anualsamante 16. Cregosaraniere 17. Green parabolica (Hippage 18. Himshamiene) 15. Cregosardinierto de agrop 16. Cregosardinierto de agrop	100			L
DANO	SCHEROAD			CANTIDAD		101	-	DENSIONS	MALOR
17	L .	47				87		12	14

CRES 10

			METCOO EST	TANDAR DE EVALU CA	RRETERAS CO		A STATE OF THE STA	the second section in the second section is	AVMENTO .		
56	Programa E	144000 - 977	4000	PRODRESS	VA INSCUAL	UNIC	AD DE MUE DED	ESTREO			56
CA	VPZ,			PROGRESA	VA FINAL	APRIL	OE WARREST	YHEO		1770	- 1
1,000	SPECCIONADO P ECC	off		km.87	9+960	rea	- Agests - S	1000			
				04505							
	de Norto en Skoque Rentos y frundsellen Islân	N/e	8. Deprived o 16. Oreson to 11. Persines	torte minutes de punter desti / bestra ngitudicales y l'arrave de agroqueixa	riets	15. Albumb 16. Despis 17. Griesa: 18. rencha	ar via fores promoto parabolica () nastrio				
onto	BEVERDAD				CANTENAS				TOTAL.	оновно	DEDUCEDO
13	- 44	0.8							92	0.1	5,0
177	· · · ·	3.4							1.4	0.0	74

TO ALL PROPERTY.

			METODO EST	CARRETERAS CO	dice de la condición superficial del N Superficie aspaltica I D 663 (200)	PAVIMENTO		
545	CCION			PROGRESIVA INICIAL	UNIDAD DE MUESTREO			
	Prograsiva C	74+000 - 577	+000	km 675-486	CHE			
CA	PARIL .			PROGRESIVA FINAL	AREA DE MUESTREO			
	.0	elaste		km 575×720	350 of			
4.00	PECCIONAZO PI	DIE .		FECHA				
Helt	CC				26 - Agosto - 2020			
				DAÑOS				
. Plet de sociedifio 7. Grieta de bordé 8. Greda de refleción de jurizas 9. Option de refleción de jurizas 9. Descrivel cerrel / biernas 9. Descrivel cerrel / biernas 9. Compación de participa 10. Greda de refleción sungitualmente y transversieles 91. Participa 91. Descrivel de apreparties 91. Participa 91. P					12, Huseico 14, Ciruso de via ferres 15, Anualdenia rec 16, Cera fescarriente 17, Cera fescarriente 17, Cera fescarriente 18, Hindepenante 18, Despressionamente 19, Despressionamente 19, Despressionamento de agregacios		1L 1L	
DARD	SEVERIDAD			CAPTEAD		TOTAL	DEMINDAD	DEDUCIOO
9	- L.	4.0				4.0	1.0	150
11	1.	3.6				34	1.6	3.0

	30
	53
	3
SEE DAGS	WLON
0 5	10.0
	SEPAD S

CREC 10
TURNOSTER AND RELEASE

			METODO EST	TANDAR DE EVALUACIÓN DEL R CARRETERAS O AST			L PANIMENTO		
38	CCION	الالماليا		PROGRESIVA INICIAL	UNIO	AD DE MUESTRED	1		5 A.W. 17
1	Progressys S	74+000 - 677	1000	6m 575×790	10730	646			104
GA	PRE.	2010		PROGRESIVA FINAL	AREA	DE MUESTRED			
- 60	0	stonts		km 575-900	2000	260 m²			100
-	IPECCIONADO P	OM:			FECH	**			
198	00				26	Agosts 2001		40	
				DANOS				10	
Plef de c Crudack Agretan Abutum Comage Comage Comage Comage	jn serito en litisque entos y hundinien son		B. Dearrest 18: Griefes to 11. Parchec	conde esfección de jurisos agriludinases y Yanavorsales de agregades	15. Atomia 16. Despus 17. Grets ; 18. Hissho	te via forma mianta sumianto mrabilitza (slippagai)			19
DARO	BEVERBAD			CANTIDAD			POTAL	DENSIDAD	ORDUGES!
10	M	0.0					9.0	0.1	9.0
13	M	8.0					8.8	3.4	90.0
7.	16	9.7					8.7	9.2	7.0

			METODO E	TANDAR DE EVALUACION CARRETE	RAS CON SU	DE LA COM UPERFICIE A M33 (2003)		ERFICIAL DEL	PAVIMENTO		216
50	0004	A 102 - 195	yv	PROGRESHA BIO	ML.	UNIDA	D DE WURST	REO			190
100	Programa II	N+000 - E7	7+000	km 675+800	374	3103333	549	23			6440
GA	PPIL.			PROGRESIVA PINA	k.	AREA	ое миевтие	10			1004
100	6	atteds		km 575+646		1-20.000	360 64				1000
84	IPECCIONADIO PI	OM:				PECH		-			
Hall	юс					26	-Agents - 2020	0			
				DANOS							
	de Homo on bloque Kortos y hundinilen Kalin	tos	9. Deserve 19. Orletus 11. Parches	e reflexión de juriles s cardi / benne longitudinaxes y trans-ersetes		48. Hochan	o via formal Nortes protesto protestos (piga	diffice	100		
ONFO	SEVERIONS			CAN	TIDAD				70114	DEMONS	DEDUCIO
13	A.	30							10	1.2	
10	M	15.0	10.0						27.8	10.6	.19.0

The second

			METODO EST		CE DE LA COMDICIÓN SUP SUPERFICIE ASFALTICA D 6433 (2013)	ERFICIAL DEL I	PAVMENTO		
86	CCICN			PROGRESOVA PROJAL	UNIDAD DE MUEST	THEO	1	700.	-
	Progressiva ti	144000 + 577	+800	km-675+840	GAT				je:
GA	WIL.			PROGRESSIVA FINAL	AREA DE MUESTRI	80			
100	0	altrado		Ave E75+860.	200 Hr*				
We	PECCIONADO P	OFF			PECHA				
100	100				36 - Agram - 302	00			
				DANOS				084	
	ier mente en bioque sentra y hundersen skiln	tre .	8. Destrive 15. Grietas to 11. Parcheo	nonde rafhelin de jurilie gonil i berne raptudheles y hanavenseles de agregados	13. PLactor 14. Cruce de via fames 15. Al antienterte 16. Consideraterito 17. Criena paradellas (alignita, informatiente) 18. Nachamiente 18. Dissprendiniente de a		,		
DANO	BEVEREIAD			CANTEAD			70TAL	DENSIONS	MACON DEDUCIDO
10	l.	10					8.0	3.5	34
10	u	84					6.3	2.5	9.0
-17	M	4.7					4.3	24	20.0

			METODO ES	CARRETERAS CO	ICS DE LA CONDICION SUPERFICIAL DEL N SUPERFICIE ASFALTICA (D 6413 (2003)	PAVMENTO		
. 500	GCROM	-146		PROGRESIVA INCIAL	UNIDAD DE MUESTRIED			
	Progressive S	78+000 - 677	-000	N/N 575-690	D4B			
CA	ARIL.			PROGRESSYA FINAL	AREA DE MUESTREIO			
- 100		ietrada		km 575+630	000 m²		91L	
.015	PECCIONADO P	Off			PECHA		18.077	
1404	OC .				26 - Agoeto - 2026			
				DAROS		J		
	io tento en Ukusum entre y hundimen són	**	8. Desiriver 12. Gineties to 11. Paratreo	bonis reflexión de juntile anyl i benesa agitalinales e i tambiénsies de agregados	13. Huacos 14. Cruce de via forma 15. Ahustismento 16. Orașianar-lanto 17. Grata asmidolias (silapoga) 18. Hischemierto 18. Caspenniforiarto de agrapatos			
billo	201/07/05/40			CANTIDAD		TOTAL.	DEMENDAD	DEDOCED
11.	1.	162	- 5			18.0	10	13.0

DESCRIPTION OF THE PERSON

			METODO ES		ICE DE LA COMDICION SUPI SUPERFICIE AIFALTICA D 6433 (2003)	ERFICIAL DEL PAVIMENTO			
860	COOM			PROGRESNA INCIAL	UNIDAD DE MUEST	160 16L 11	-		
100	Progressos S	4+00E-577	<0.00	km:575+820	549			- 10	
GA	HRS.			PROGRESIAN FINAL	AREA DE MUNETRE	10		- 10	
		skinda		km 575+985	250 m²	(i)		_	
	PECCIONADO PI	38.			FECHA			198	
HR	ec				25 - Agents - 202	E	- 1	100	
				DARDE			1,		
	in wents on biblijwe entos y flundimien stin	000	St. Desrivel 10. Gretus i 11. Forchos	reflexión de jurios camil l'interna mighidinasse y transversións	13. Rivecces 14. Coluce de sits llemes 15. Artuellemente 16. Desparationies 17. Grada parabelles (sitsp 18. Rivectamiente 18. Desparationies de ap 18. Unisprandimiento de ap	27 A. C.			
DARO	SEVERIDAD			CAMTIDAD		to	TAL DEN	0400	DEDUCERO
10	t.	7.6				7.	0 3	7	1.0
11	6.	36.0				. 10	0 1	1.8	17.0

			METODO ES		ARRETERAS CO			OFFICIAL DELPA	VINENTO				
60	COIGN Progressia S	14-100 - EFT-	-660	40000000000	SNA WCML	1	UNIDAD DE MUESTI	RED 1	1184				
CA	APPL C	alounte	-	PROGRE	50A FRAL 574-000	AMEA DE MUESTREO		The E	HZH HZH				
-	PEDCHONADO P	OFF				- 1	PECHA 26 - Agosto - 2020	_	1586				
				DAROS									
	on, dentis en blanjse lentisk y hundstrien dör	nin.	5. Desrive 10. Great I 11. Perches	n reflection de jurises risenti l'ijemne lingifictinales y frans		94.10 98. A 96. D 97. G	necce rupe de via ferese haetlersento espacar lendo rista parebilitza (sitgo trabando to magnendinianto de ag	75 Table 1 4					
sin/fin	SEVERNO				CANTELAN				7000	DEHOIDAD	DEDUCE		
.11	н.	10.0							10.0	20.0	67.0		
11	н.	10.3							16.0	4.7	14.0		
ti.	M	26.0							20.0	37	04.0		
17	1.	5.2							1.1	10	9.0		

CHEC 10

			METODO EST	CAMPETERAS CO	NCE DE LA CONDICION BUPE/IFICIAL N SUPERFICIE ASFALTICA D BIGS (2003)	DEL PAVIM	ENTO		
36	CORN			PROGRESON INCOM.	UNIOAD DE MUESTREO				
-	Progresses E	74×900 - 877+	900	ion 676-000	981				
CA	WHILE.			PROGRESNIK FINAL	AREADE MAISTRED				
		eloede .		No. 570-048	250 +4"				
INI	IPECCIONADO P	DIONADO POR FECHA							
+480	loc .				26 - Agrada - 2020				
				salics					
Pet fix o			7. Gebreit	trede Wiscon de jurites	15. Huesse 16. Cryce de vie ferne	239	100		
	niamo en bisque	2855		prii / berna	18 Alryellaments	0.75			
E. Corruge B. Osprasio	santos y hundrian solon dei	494	Rt. Parches	spitulinains y transversains de aprapatio	18. Despiazurvento 17. Grieta paracolina (sippinge) 18. Hinzbarisurto 18. Desprendimiento de agregados	2114			
DANO	SEVERDAD			CANTENI			HORAL	ромною	VALOR DEGUCIO
**	84	38.3	1				10.0	12.5	96.0
13		0.9					0.0	0.4	34.0

CHEC 10

			METODO ES		INDICE DE LA COND CON SUPERFICIE AS ITH D 6433 (2953)	the contract of the first factor of the contract of the contra	DEL PAYIM	ENTO .		
50	COIDN			PROGRESMA INCIAL	UNIDAD	OR MURSTINEO	314			- 1
1	Progressys 17	74+00E - 5774	-000	691 575+G4D	1	962	4.1.			
CA	PPA.	777		PROGRESMA FRUIL	ARISA D	CONTROURS 3				- 1
100		alcade		km 676-060	3 555.000	200 m²*	- 11			
	PECCIONADO P	OR.		100-1010-1000-2	PECHA		- 11			
146	CC.				36 -7	hgoats - 2020	- 11			
				DAAOG						
	on Nento en Stingue sontos y hundimiso cilin	104	9. Distribui 12. Gridos N 11. Parcheo	bonia vertición de juntas centr farena ingliudinales y transversales o de agregados	18, Hirchanie	peta rilanta statica (vilopega)		1944		
DAÑO	DEVENDAD			GANTIDA	0			TOTAL	DEMOIDAD	DEDUCIDO
19		12.0						124	4.6	12.0
7	Н.	6.0						60	2.0	91.0
. 3	M.	7.2						7.2	28	8.0

			METODO EST	ANDAR DE EVALUACIÓN DEL IN CARRETERAS CO ASTI			PAYMENTO		
381	COOR		1004 2	PROGRESIVA INCIAL	UNIDAC	DE MUESTREO		IM.	
100	Programve S	N+900 - 677+	-000	km 579+083	78003	083	1 1		
CA	FIFTH.	7.00		PROGRESIVA FINAL	AMEA D	E MURISTRICO	1 1		
100	6	eltada.		X11 570+130	0.000	300 m²			
eve	IPECCIONADO P	DR:			PECHA				
HAR	00				26 -	Agosto 2020			
				BA908					
	(e Mento en biolaxo Isentos y hundintan Islan	ta .	S. Descrive o	eficació de juntes pré / becha gilutinako y transversales	18. Hircharts	unito marrito mbilitina (ulipolege)	Ī	th .	
0480	SEVERIDAD			SANTOAD			70144	DENSIONS	VALOR
28	**	24.0					26.0	8.2	40.0
11	Mr.	161					18.1	4.2	24.0

CHEC 10

			METODO ES	CARRETERAS CO	DICE DE LA COMDICION SUPERFICIAL DE N SUPERFICIE ASFALTICA I D 6433 (2003)	LPAVIMENTO		
100	Progresive III	4+030 - 577+	900	PROGRESAN PECIAL No. 670+120	UNIONS DE MUESTREO	710		
GA	ARE.	strade		PROGRESNA PRIAL	AVEY DE MITERIALEO	1,100		
	PECCIONADO PI	7		W1575-00	FEGNA. 26 - Agosto - 2020			
-				DARGO				
	on Hermit en Storgye Hertos y Faunderien Silie	tos.	9. Descrive 16. Ortolas 8 15. Patzheo	referito de juntas sará / benta ngliudinaies y tisrovensies	13. Hancon 14. Cruze de visitentes 15. Africalizarento 16. Despatamento 17. Cristin paradolica (olippage) 18. Hochariento 18. Congrandimento de apragados 18. Congrandimento de apragados		The second secon	-
DARD	SCYCNIDAD			CANTOAD		TOTAL	DOMBOAD	DEDUCEO
11	H.	95.0				16.0	6.2	ASIE
13		1.8				1.2	0.0	1916

			METODO EST	CARRE	ETERAS CO	NCE DE LA CO N SUPERFICIE D 6433 (2003)		FICIAL DE	L PAYIN	ENTO		
100	OCKOW			PROGRESNA	NCIAL.	UNIC	AD DE MUESTRE	0		7:100		
	Progresiva SI	r#+000 - \$77+	-000	Am 579-1	100		600					
CA	AHL.			PROGRESIAL	FBMAL.	AREA DE MUESTREO						
	9	olovele		km 679-0	000		300 Hz			HIL.		
100	PECCIONADO PO	OM				PEC	A Total and property of the States			Tak	201	
100	00	311				3	6 - Agento - 3000				346	
				DAROS								
L Alsulture L Corrupa	on Sonto en bisque Settes y hundimien Son		6. Detrive o 16. Gretas in 11. Parcheo	reflexión de jurias parti / bernis ngfunficales y Yanzwensa		15 Anuel 16 Despe 17 Grata	de sià ferrea ertento comindo paratolina (sitypa)	m)	124			
. Degress	м		12. Pulmento	de agregados.		12 Descri	emento endimiento de agre	pados				
DARO	SEVERIDAD				CANTEAD					TOTAL	DENSENAD	WALCH DEDUCED
10	H.	8.0								8.0	2.3	16.0
11	1.	760								160	4.3	10.0
10		340								24.0	1.2	30.6
19	tot .	+.0	11 1/							1.8	6.7	25.0

water a series

			ME1000 68	CARRETERAS CO	INCE DE LA CONDICION SUPERFICIAL DEL F N SUPERFICIE ASKALTICA D 6433 (2003)	AVMENTO.		
50	CCON	SENSYCKO.		PROGRESIVA INICIAL	UNIDAD DE MUESTROO			
100	Progresiva 5	14+000 - 277+4	000	Nm 579+300	000			
CA	MAK			PROGRESIVA FRAL	AREA DE MURSTRED			
	0	orizache.		8th 676-240	260 m²			
245	PECCIONADIO P	OM:		110/75/200	PECHA			
1490	00	100			26 - Agretic - 2020			
				palice		1		
	ón sianto en bloque iantos y hundimiae odo.	-	 Dosnwol Greton Ir Parcheo 	borde reflexión de juntase carril i borma repleximases y transversales e de expreçados	13. Humani 14. Cruze de via farma 14. Arbeiterando 15. Despissamiento 17. Grate parabólica (sappage) 15. Humaniando 15. Desprendintando de agregados	Ľ		
DANO	BEVERTOAG			CANTELAD		TOTAL	DENSIDAD	WALDR
1	м	20.0		T T	1 1 1 1 1	160	49.0	64.0

CREO 10

			METODO ES	CARRETERAS	, IMDICE DE LA CONDICIÓN SUPERFICIAL I CON SUPERFICIE ASFALTICA STM D 6433 (2003)	EL PAYME	NTO		
340	COOM			PROGRESINA INIONAL	UNIDAD DE MUESTREO	3291			
	Progresse 5	74+900 - 2774	000	8/K S76-24E	967	- 11			
CA	MPKL.			PROGRESIVA FINAL	AREA DE MUESTREO				
Colomba				64 879-260	280 m²				
INSPECCIONADO POR INFOC					FECHA	- 11			
					26 - Agosto - 2000	Η.			
				DANOS					
1. Plat de cocadrito 7. Greez de forde 92. Huestos 12. Huestos 2. Exudación 8. Greez de forde 92. Aprilamento en bioque 9. Ostaniero en 15. Aputatoriero y fundirecente 91. Ostaniero en 15. Ostaniero en 15. Aputatoriero y fundirecente 91. Ostaniero en 15. Aputatoriero y fundirecente 91. Ostaniero en 15. Publicatoriero 91. Publicatoriero 91. Ostaniero 91. Ostaniero en 15. Publicatoriero 91. Ostaniero 91. Os									
SANO	SEMEROAG		сиялы	АМПОАД		TOTAL	DENSIGNO	VALOR	
17	16	2.7					5.1	2.0	36.0

CHRC 10

			WET000 ES	CARRETERAS C	NDICE DE LA CONDICION SUPERFICIAL DE ON SUPERFICIE ASPALTICA M D 8433 (2003)	DL PAVIMENTO			
86	OCION			PROGRESNA INCIAL	UMDAD DE MUESTROD		319		
-	Progressive 57	4+000 -57	7-000	Art 670-280	crisa		Size The second		
Ca	ANN.			PROGRESINA PINAL	AREA DE MUESTREO				
	6	elizacio		tim 576+320	3000 m²				
the state of the s	SPECICIONADO PO	346			FERMA		TIM		
146	100				34 - Agosto - 21011	188			
		11M	11M						
	in necto en bloque sento y hundmen soon	88) (S. Deprive 10. Griston 15. Parchao	e reflexión de juntas l'operii l'borna longitudiname y transvenuzas	15. Haccos 14. Cruze de via fames 15. Artunischiere 16. Congresionnents 17. Greek parabolista briography 16. Historianniants 16. Congresionnents de agregados				
DANO	SEVERGAD			CANTIGAC		TOTAL.	DENSEAD	VALOR	
1	м	6.6	12.5			19.3	7.4	46.0	
711	16	10.0	24.0			94.0	18.1	36.0	
13	M	0.0	-			6.6	0.2	9.0	

THE REPORT OF MICHES

			METODO ES	CARRETERAS	CON SE	DE LA CONDICION BUPERFICIAL DI PERFICIE ASFALTICA KIO (2000)	EL PAVIMENTO				
.10	CCION	2000		PROGRESMA DICIAL	-	LINEAD DE MUESTREO	701				
1.0	Programive Si	P#+008 - 87	7+999	am 576+360	1	060		- 11	DE .		
CA	HRE.			PROGRESMA FINAL		AREA DE MUESTRED	1	- 6		- 1	
- 110	0	wizovin		No. 879+400	1	300 H/*					
4400	SPECCIONADO PI	OR		-1:		PECHA					
146	100 ·					36 - Agesto - 2020		318			
DARGO									***		
E. Plet te : 2. Esudian 3. Agestar 4. Abultan 6. Comuga 6. Depress	ós nient) en Slogue ierkos y Iszadinien osto	ton.	5. Deserver 12. Griefes 1 11. Farofeo	refesely: de jurios cursi l'horriu ingitudinales y transversales		#2. Nuecos 14. Chupa de via hertas 15. Anadrianserá) 16. Cesplacarrierio 17. Gress paradelos (hippago) 18. Hitchanierio 18. Decymostimiento de aprogados		÷			
DANO	SEVERSAD			CANTE	NO.		901	ML:	DENSIDAD	SHENCIEG SHENCIEG	
11	**	15.0					16:		8.0	36.0	
91	L	2.0					25	-	0.0	2,1	
11	M	1.4	160				16.	()	9.3	26.0	
. 7	14	1.6	1)	13	8.0	

CREC-30

			METODO EST	TANDAR DE EVALUACION DEL E CARRETERAS C AST		E ASFALTIC		PAVINENTO				
80	SECCION PROGRESIVA SUCIAL UNICAD DE MUESTREO								1200			
	Programma D	F4-000 - 5774	4000	809-579+440	1	062			DH-			
CA	ANNEL.			PROGRESIVA FINAL	PROGRESIVA FINAL AREA DE MUESTREO							
	0	elanda .		Net 579+490		200 m²		807				
-	PECCIONADO PO	044			FECHA			ЭН.				
190	00					25 Agosto i	2000					
				DAROS								
2. Evolute 5. Agrietari 6. Abultari 6. Corniga	Pel de cocodifio					con os de via herne ellemento pledamento la perabólica o Parelerto prandi manto o	ajoseita)	118				
DARO	SEVERIGAD			CAMTROAC				7UNAL.	DENDIOAG	DEDUCIO		
F		36.0					T	36.0	13.6	17.0		
11		28						3.6	10	12.0		
3		28.0						200	10.0	36.0		

CHEC 10

			METOGO ES	TANGAR DE L'VALUA CARI	RETERAS CO	Carlot de la maria succession de	ASFALTICA	EFICIAL DEE PA	WHENTO		
90	ODION		PROGRESINA INCIAL		UNIOAD DE MAESTREO		60	194			
1	Programma 1	78+000 - ST7	-CITIE	Sex 576	H400	100	060	71	100	122	79
CA	ATTEL.			PROGRESING	LFINAL.	AREA DE MUESTREO		10			
100	Calcada			101 570	×539		THO HY				
945	PECCIONADO P	on			1.41-	FEC	HA	717			
168	66						5 - Agness - 2170				
				DANGS							
t. Pail de d 2: Evotario 3: Agrietan 4: Agustam 5: Corrugo 6: Depresi	on nierdo en Dioque sentire y hundinier cobr	rin	6. Destinal 10. Gresse ii 11. Parcher	reflector de juries. carri / borna regitativaries y francestro	poles	15 Ahuel 15 Despi 17 Grate 18 Hinds	do vio forteò lemento approento panalidhos (silges)	35			
DANO	SEVERIDAD				CANTEAD				TOTAL.	DENSONE	DEDUCIOD
11	- 14	29.0		TIT					20.0	10.8	63.8
. 7		7.6							7.6	2.9	12.8

					SUPERFICIE ASFALTICA 1 6433 (2003)				
.50	COOK		7.7	PROGRESAN INCOME.	UNIDAD DE MUESTREO		PIM		
	Fragresiva E	4+000 - 677-	-000	Arn 976+528	094	1			
CA	MIKE.	1122		PROGRESIVA FINAL	AREA DE MUESTREO	100	200		
Catteria in 576-660				MN 576-660	261 107	14.		7	
NOPPCCIONADO POR					FECHA				
140	NOC	1.1			26 - Agorts - 2020			J.	
				DARCE					
1. Plef de cocodrito 2. Grieta de borde 13. Huecos 14. Criuso de inflamo 15. Aproprio de portas 14. Criuso de inflamos 15. Aproprio de portas 14. Criuso de inflamos 15. Aproprio de 15. Criuso de inflamos 15. Aproprio de 15. Criuso de inflamos 15. Aproprio de inflamos 15. Aproprio de inflamos 15. Aproprio de inflamos 15. Criuso general 16. Criuso general 16. Criuso general 17. Criuso general 16. Criuso general									
DAÑO	SEVERDAD			CANTEAD		TOTAL	DEHDEAD	WEOK	
	1	10.0				811	12.3	35.0	
	M.	24.0				24.0	6.2	30.0	

TOTAL STATE OF THE PARTY OF THE

			METCOO ES	CARRETERAS CO	DICE DE LA CONDICION SUPERFICIAL DEI NI SUPERFICIE ASFALTICA I D 6433 (2003)	L PAVIMENTO			
56	CCION			PROGRESINA INICIAL	UNIDAD DE MUESTRED			,	
	Programma 6	74-000 - 677-	600	km 676+600	588				
CA	CARRS. PROGRESIVA FINAL				AREA DE MUESTREO	216	194		
	Camete 87.5				360 m²				
840	SPECCIONADO P	OR			FECHA				
119	(CC				26 - Agoeta - 2010				
				DARGE					
4. Abultan	ón Henrip en Skogus Aprilos y humilimen Islán		8. Destrive 10. Grefus I 11. Parches	refesión de juntes cantr/ perma ingladinates y transversares	Historia da visi farinsa Afruellamento Pespitazionento Gristo paradolina (alignage) Historia paradolina (alignage) Historia ente rila Dospirandentarimi de agragados				
DAÑO	BEMERIDAS			CANTIDAD		YORAL	DENGGAD	DEDUCED	
1		40.0				40.0	15.4	96.0	
7	10	7.6				7.0	3.0	12.0	

Evaluación del pavimento asfaltico mediante los métodos PCI Y VIZIR de la ruta nacional PE 3N del kilómetro 574+90 al 577+00, de la ciudad de Huaraz 2020

CREC 10

Evaluación del pavimento asfaltico mediante los métodos PCI Y VIZIR de la ruta nacional PE 3N del kilómetro 574+99 al 577+90, de la ciudad de Huaraz 2020

			METODO E	CARRETERAS	INDICE DE LA COMBICIÓN SUPERFICIAL. CON SUPERFICIE ASPALTICA (TM D 6433 (2003)	DEL PAVIMENTO		
- 58	0000W			PROGRESMA INICIAL	UNDAD DE MUESTRAD			
	Progressva S	V+000-87	7+000	\$49.676+66E	088		Ŧ	18 T7M
104	PRIL.			PROGRESMA FINAL	AREA DE MUSETINEO	216		
	D	stets		N/s 078-720	280 H	in.		_
and more	SPECCIONADO PI	pit .			PECHA		ЭН	
160	60				39 - Agosto - 7029			750
				DATOR				
4 Ažstava 6 Comiga 6 Depresa	con marrier on Moscus auntics y hundrales on in		8. Deprive 98. Grieray 11. Parchec	o nefroidin de juntes 1 partil / berma Ongitulinable y transversales to de agregiens	15. Nesce de via fones 16. Cruze de via fones 16. Aspelantonio 16. Companymente 17. Companymente 18. Protegrandos subpoga; 18. Protegrandos de agregados 18. Companymente de agregados	38	118	154
DARG	MEVERIDAD			CANTEL	10	TOTAL	DENSIDAD	WE'ON DEDUCED
11	H	15.0	18.2			31.0	11.4	68.9
11	- 6	1.6	1			1.6	0.6	4.8
11:	N N	19				1.6	4.7	8.0
13-	Pi Pi	9.1	0.1			0.5	5.1	18.9
17	W	13	1			1.8	9.6	7.6
	H	4.2	13.4			14.6	3.6	21.0
-	N.	1.2				3.2	1.2	8.0

THE CASE OF THE SEA

Evaluación del pavimento asfaltico mediante los métodos PCI Y VIZIR de la ruta nacional PE 3N del kilómetro 574+00 al 577+00, de la ciudad de Huaraz 2020

			метоос	ESTAND	AR DE EVALUACI CARRE	TERAS CO		E ABFALTICA		PAYMENTO		
869	DOLOM				PROGRESIVA II	VICTAL.	UN	DAD DE MUE	STREO			
	Progressva 57	4+000-57	7×900		No 576-7	70		100			186	- 1
CA	ARS.				PROGRESSIA P	MAL.	AR	EADE MUEST	REO	1.2	71%	
	C.	altedie			BM 879+7	100		260 H				
	PECCHARIO PO	26					provide a	CHAR			186	
14%	OC .						lane.	29 - Apolito - 2	526	1 1		
					DAROS							
	on Hendo en blogue Handres y flundfresen Joh	ton.	8. Core 9. Desi 16. G/W 11. Parc	nivelicanti: tan temperat	on ox pates bertio Index y transversel		16, Anus 16, Desp 17, Griet 18, Hind	coli a de via fatica. Ramiento (aperadolica (el teratolica peradolica peradolica (el	Accompany	3114	7M - T1	e.
DAÑO	MENTRICIAD					CANTIDAD				301M.	DENSIDAD	DEDUCIDO
	W	5.4								14	21	26.0
.11	H	18.0								76.0	8.2	46.2
19	1.	0.8	14.0							76.8	6.0	12.0
- 59	W	12.6	16.0							27.0	10.4	32.9
19	M	8.0								8.0	2.5	15.9

CREC 10

Evaluación del pavimento asfaltico mediante los métodos PCI Y VIZIR de la ruta nacional PE 3N del kilómetro 574+90 al 577+00, de la ciudad de Huaraz 2020

			METODO ES			FICE ASPALTICA	DEL PAY	MENTO		
CA IN	CCIÓN Progressos 6 Progressos 6 Progressos 6 SPECCIONADO PO	atoses		PROGRESIA RICAL IN STI-100 PROGRESIA FINAL NO STI-100		UMDAD DE MUESTRED DOTS APEA DE MUESTRED 200 H ² FECHA 26 - Agrant - 2020		9196 1886 J		
	ón seinig) en Sikkyue Hanfos y Stundinillen Islân	104	18 Grietas I VI. Perthuo	refereir-te jurge carti i terme orghidrates y trenveniane	54, 16, 16, 17,	Huerys Chus de vis ferme Anualismento Desplacemento Greta persididas (Hossege) Hischanismo Desprendimiento de agragados Desprendimiento de agragados			1196	
DANO	BEVENIDAD			CANTENC				101ML	DENSIDAD	VALOR
- 11	#	34.0						29.0	9.5	49.0
- 11	M.	6.0			- 1			6.0	2.5	16.0
10	M	ta-						1.6	2.0	7.0

TOWNSHIP OF STREET

Evaluación del pavimento asfaltico mediante los métodos PCI Y VIZIR de la ruta nacional PE 3N del kilómetro 574+90 al 577+90, de la ciudad de Huaraz 2020

			METODO ES	TANDAR DE	EVALUACION DEL II CARRETERAS C AST		E ASPALTICA		AVMENTO		
58	CCION	and the same of	Our Lat	196	OGREBNA BICIAL	LB	HOAD DE MUR	HSTREO		194	-
1 3 2	Progressia 57	4-000-577	100	967	km 576+900		671	2000	1		
CA	FIRST.	Bade-		PR	OGRESINA FINAL	Ac	EA DE MUES	TREO			
	0	eicede		=[0]	km 570+640	100	260 or	10000			
	BPECCIONADO PI	DM .				FE	CHA	reconstruction of the same of		- become a	
100	00					1/2	28 - Agneti - 1	2000		196	
				DA	Nos.					- 31	
	OV remetis are bloquae incritis y hundiriaus solon	100	9. Degraver 10. Coutus i 11. Perobao	e reflexión do como literativo onglactinolos	y transversales	16, 700 16, Dos 17, Gre 16, Hay 16, Dos	e de via fema electroria placamiento se perabolica () numero prendimiento di	ritoepri n agrapatos	×	*	
owlo	SEVERIDAD				CANTIONO				TOTAL	DENSIDAD	ANTOM ANTOM
***	**	7.8							7,0	27	380
- 11	- 6	6.0							6.0	8.1	0.0
	1 20	100							400.0	4.4	20.0
**	N:	15.0							16.0	5.6	23.0

Evaluación del pavimento asfaltico mediante los métodos PCI Y VIZIR de la ruta nacional PE 3N del kilómetro 574+00 al 577+00, de la ciudad de Huaraz 2020

			METODO EI	CARRETERAS COM	CE DE LA CONEXCION BUPERFICIAL SUPERFICIE AUFALTICA 3 6403 (2003)	DEL PAYME	MTO		
540	00:08	SECTION .	5200 pt 1 2 - 12 -	PROGRESNA NICIAL	UNIDAD DE MUESTRED				
100	Progresso E	14+600 - 13	77-600	UN S70-840	072	9020 12			
CA	ARL	1807	CHICA TO	PROGRESSNS FINAL	AREA DE MUESTREO	3736			196
	- 6	eltoste		4m 5P6+560	260 /6"	17			1
	PECCHONADO P	OR			PECHA				
160	00				26 - Agreets - 2028				
				DAROS					
4. Abultami	in vento en bloque lentre y hundimen skin	toa	S. Desires 15. Orlotos 15. Parchec	o reflección de juntas i carril / berme. brigilludiratios y transvenatios	12. Humber 14. Cruce de via farrez. 15. Anualtemento 16. Dospitaza rikorio. 17. Ginde parabilitzo (rillapago) 18. Historiamento. 18. Desprendimento de agregacios.		2		
DANG	DESCRIPTION			сантова			TOTAL	DENDOAD	DESUCISIO
. 1	1.	3.0					3.0	1.2	12.0
11	- 6	24					2.4	9.9	0.0
17	W	0.0	14.8				32.5	6.7	411

THE SALE OF THE SA

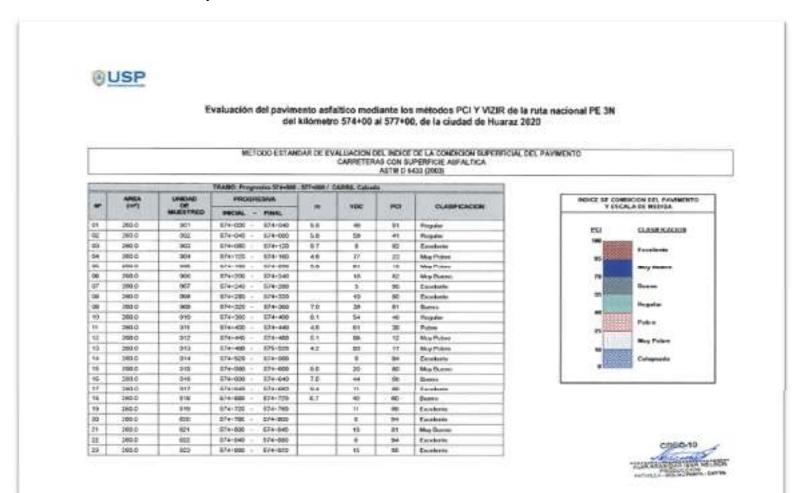
Evaluación del pavimento asfaltico mediante los métodos PCI Y VIZIR de la ruta nacional PE 3N del kilómetro 574+00 al 577+00, de la ciudad de Huaraz 2020

			METODO EST		CON SI	DE LA COMDACION SI IPERFICIE ASFALTICA 433 (2003)		DIMENTO		
10	оском			PROGRESIVA INICIAL	-	UNIDAD DE MUE	DINEO	310		
	Programius E	N=000 - 577+	-000	AUT 575+080	1	078				
CA	PORUS.			PROGRESIVA FINAL	21	AREA DE MUES!	MED			
		accedia.		6/h 578+503	1	260 m²				
autoriti	PECCIONADIO PO	OR			1	FECHA				
HR	oc.				1	24 Agente 3	1049			
and the last				BANCS.						
Plat de o Evotació Agnetair Abiutium Corrugas Depresso	er Hertis en bloque Hertis y Navidiniae Sûn	tes	B. Deprive o 10, Cristian for 11, Parcheo	ocode reference person april 7 Germa gifteriores y Marinesermanno che agragacion		43, Niverce 24, Oncor de via ferme 25, Arbustamento 45, Despresamento 17, Greta persociosa (s 16, Ninchamento 18, Desprendimiento di	Roompei	HH		
neko	SEVERIDAD			CANTIGO	100			TOTAL	DENSEAD	DEDVOES
11.	H	12.6						120	4.0	16.5
111	1.	34,6						24.0	12	10.0
19	100	0.6						0.8	4.5	10.9
3	- 14	12.0						12.0	48	12.9

CREG 10

Evaluación del pavimento astaltico mediante los métodos PCI Y VIZIR de la ruta nacional PE 3N del kilómetro 574+00 al 577+00, de la cludad de Huaraz 2020

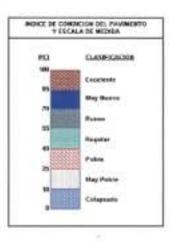
			METODO EST		CARRETERAS CO	DICE DE LA COMBIC N SUPERFICIE ABF D 6413 (2001)	NON SUPERFICIAL DEL F ALTICA	OTHERIDA		
.00	OCION			100000000000000000000000000000000000000	SANK INCOM.	UNDAD	E MUESTREO			
1	Progressva Si	NE+DBB - 877+	-008	- Prophysical Service	576+020		074			
CA	PRIL.			and the second of the second of	ISAN FINAL	and the second second second second	MUESTREO			
1		ettede		164	576+960	Name and Address of the Address of t	90 eV	31	н	
	PECCIONADO P	DME				FEEHA		1 1		
100	ce					28 - 10	000 - 2720			
				EMBOS						
	in Hents on bloque		5. Descrive	coffeetor de parties parifi / bentra		13, Plumbin 14, Grune de vi 12, Arustianner	10	71M		-
Corruga Deprova	eintoe y hundrisso odn ei	04	11. Fortheo	nghdrakn r tar i de agregatis	DATE OF THE PARTY	18. Chestospores 17. Gress paras 18. renchamen 19. Chesprondin	Office purposepri		**	C
DANO	SEVERBAD				Свитимо			TOTAL	DEMINIONED	SKENCKOO SKENCKOO
1	**	10.0				T		10.6	2.0	49.0
	let .	2.0						20	6.8	16.0
111	144	12.0						12.6	-64	27.0



Evaluación del pavimento asfaltico medianto los métodos PCI Y VIZIR de la ruta nacional PE 3N del kilómetro 574+00 al 577+00, de la ciudad de Huaraz 2020

			METODO E			PICE ASFALTICA	L PAVINE	кто		
58	CCION			PROGRESIVA INICIAL		UMBAD DE MUESTREO		NIM.		- 12
	Progressive 57	4-009-57	7-000	km 575+960		EPA		7	M	
CA	ARK.		ones.	PROGRESIVA FINAL		AREA DE MUESTREO		- 1	(2)15	
	9	erada:		881 SU77+000		280 m²				
IM	SPECCIONADO PO	SHE .		III TO SOM PARTIES		PEDM				
107	100					20 - Agosto - 2020				
				DARGO						
L. Absérve	der roderkt en 180-gue Genton y hysoliteiserk	io.	to Degrove	collector de justice carril / Sestice conglicitories y transversame	16.4	tuecoja Ouele de via fermos Vosetarnienko Segitacomento		M		VIIW .
, Comige , Deurses	olen Gri		11. Perrios 12. Fulrost	o de sprogados	18.0	Dieto parabblica (siposge) Enchamento Sespondimiento ilo agregados				1186
DANO	DEVENDAD			CANTIDAD				YOTAL	DENSIDAD	DESALCISIO
71	M	4.0	20.0					38.0	19.0	21.0
.13	M	1.0						C6	6.7	12.0
	- 10	10.0						16/3	4.0	18.0

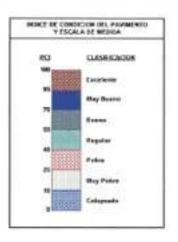
Anexo C 1. Resultado del PCI y su Clasificación



Evaluación del pavimento asfaltico mediante los métodos PCI Y VIZIR de la ruta nacional PE 3N del kilómetro 574+00 al 577+90, de la ciudad de Huaraz 2020

METODO ESTANDAR DE EVALUACIÓN DEL INDICE DE LA CONDICIÓN SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTIN D 6433 (2003)

			TRAMS: Programtic ST4-900	-517+00EJ	CAPPEL Calcul		
-	AREA	UNIDAD	PROGRESSIA	SILI	Vec	PCI	CLASSICACION
-	943	MARKINGO	MORE - FINE		VIDC:	PG	CLABFICACKS
24	0.005	104	5741920 - 5741900			*	Dicelette
	200.0	127	574-950 - 575-500			99	Exidente
26	290.0	609	575+600 - 575-546	78	38	-72	May Duotro
27	200.0	627	073+040 - 375+000		46	38	Dane
20	499.4	1948	0/910W - 3/01149	8.0	100	. ***	request
20	260.0	628	579+120 - S15+100	82	48	- 81	Rojer
00	260.0	.000	975-160 - \$75-200		- 1	92	Enceloris:
31	260.0	801	675-200 - 675-340	7.6	41	.50	Burns.
W.	260.0	832	879-240 - 875-256	-	19.	.81	May Buern
23	260.0	633	675-290 - 575-320	44	20	73	May Beens
34	260.6	-034	675-320 - 575-366	6.6	49	54	Replie
36	290.0	636	875-360 - 175-400	8.3	tt.	**	Catalogie
36	260.0	1096	875-400 - 575-445	8.6	. 23	77	May Sweet
ST.	0.000	637	575-440 - 575-488			96	Estaberta
38	200.0	638	105-481 - 105-521	9.4	.11	- 11	Country
19	260.0	630	575-520 - 175-580	8.4	111	-75	May Hunte
-	610.0	040	575-569 - 576-599	94	116	- 97	Contents
45	260.6	041	575+610 - 575-646	1000	. 9	91	Estations:
41	280.0	942	175-640 - 575-880	9.5		.91	Costete
0	260.0	949	575-600 - 525-736	8.6	17	63	Mythern
44	290.0	046	\$75+726 - \$75+796		18	-80	May Reer's
-	290.0	549	575-780 - 575-800	1.0	901	46	Prignie
	260.8	046	575-800 - 575-840	1	16	91	Way Burns


A UNIVERSITY OF THE SEA

Evaluación del pavimento asfaltico mediante los métodos PCI Y VIZIR de la ruta nacional PE 3N del kilómetro 574+00 al 577+00, de la ciudad de Huaraz 2020

METODO ESTANDAR DE EVALUACION DEL MONCE DE LA COMDICIÓN SUPERFICIAL DEL PAVIMIENTO CARRETERAS CON SUPERFICIE ASPALTICA ASTW D 4433 (2003)

		and the same of the same of	TRABEL Progress	10.174+006-	577+9007 4	APPUL Cabos		
	AREA	UNISAD	PROGRES	NA .	22.00	Table 1	3.27	120000000
"	100	MARITREO	BOOML - I	PMAL	-	MDG	POI	GLASIFICACION
47	390.0	047	375-640 - 1	175+480	5.0		19.	May think's
40	760.0	540	575-686 - 5	75-900		. 13	-87	Expense
401	200.0	049	pro-ore - r	173-960	5.0	31	88	Beens
80-	280.0	988	576-969 - 5	579-060	1.6	.99	4	Columnodo
97	3600	361	870-000 - 1	75-040	2.9	74	36	Potre
40	290:0	902	670-04E - 6	26-060	0.1	18	40	May Secre
62	360.0	980	\$70-088 - X	176-120	8.7	62	48	Regular
54	380.0	25e	674-120 : 5	175+160	6.6	41	14	Barre
46	340.0	088	576-566 - 5	579+100	14.	47	93	Regular
540	260.0	256	576-208 - 1	(940-45)		. 14	- 46	Regular'
67	280.0	167	575-246 - 5	E76-280		- 30	79	May Swore
88	260.0	954	\$74-286 - 5	176-300	8.0	- 80	40	Regular
10	268-0	25.8	1676-30% X	179-1405	#2		19	Polyw
60	2900	960	576-360 - 5	E75+400	4.7	- 41	62	Regular'
ei	260.0	061	576-600 - 5	576+640	5.0	26	34	May Potro
60	260.5	962	876-440 - 5	O9+480	5.6	74	36	Probin
81	3800	1991	3/8+486	1791100	1.3	30	- 45	Topas
64	200-0	004	216-223 - 1	179-960	7.0	47	. 50	Repoler
60	200.0	966	576-586 - 1	D9-600	4.3	34	To.	May Barro
64	200.0	300	976-900 - 7	129-940	1.9	70	30	Polare:
47	260.0	967	376-640 (79-660	6.2	64	36	Pulse
40	260.0	948	576-901	E79+120	9.8	84	34	Potes .
40	340.0	1600	976-718 . 1	136+160	65	84	la.	Potes

Evaluación del pavimento asfaltico mediante los métodos PCI Y VIZIR de la ruta nacional PE 3N del kilómetro 574+00 al 577+00, de la ciudad de Huaraz 2020

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMIENTO CARRETTRIAS COM SUPERFICIE ASFALTICA ASTIN 0 5403 (2003)

	AMMA	UNEAD	PRODES	ONE	-	VINC	PC)	CLASSICACION
	\$60°3	MANAGERED	MOAL -	POINT.	77		364	CONSTRUCTOR
76	290.0	879	576-760 -	676-600	8.7	10	47	Reguler
71	290.0	(07)	370+900 -	370+540	7.8	61	26	Sem
19	260.0	072	979-940 -	170-100	6,2	46	- 84	Regular
TJ.	269.0	675	\$76-880 -	570-900	TR	: 34	40	Repair
74	398.9	pre	919-400 -	819-900	9.1	40	.40	Program
12	296.0	.07E	570+060 -	21T-000	1.1	38	- 60	Biette
11111			PRIORREDAD				62	Boino

Anexo D 1. Análisis de resultado Nº 2 método VIZIR

			Prog	coiva .	Ande d	rla Viadenò	Area del Than	no (or/2).	la:	CMS	carion
	Metodo VIZIR		Inioio	Final	_	Longitud	630		3	Ruca	
		45,115	579+990	900 370100	6.5	106	San	8	**	Political	THE PERSON
	TIMO DE FALLA	Codes	- 0	RAVEDAD		EXT	NUMBER	Tr.	30	be	1
	THOUSE PALLS	(30%)	1	200	3	Arm	Presidentale	TH.	M.	380	tr
Tipo"W*	Financia Pad de Coco dello	FRC		X		21	3.23%		1.5		
Estructurales	Finanza longitudinales per fitiga	EU							* .		
that constitutes	Disches a purchas (de deterioros Tipo A)	11	X	X.		37.5	5,77%				
1	Financi de contracción terrolos	PCT					+				
demok	Deglistamiento o abultamiento o situalismiento de la moreta	DM								1	0
5	Desiriographic de las burdes del pavimento	DB	X		¥	19.3	2.56%			32	- 5
	Errosión do las herman	69.	X			7.5	1.15%				
1	Ferzida de agragados.	PA					- H			1	
8	Fisate punifolicus	115			X		1.7956			E .	
F	Pérfala de la prévala de ligarte	17.	J			Findle St	CONTRACTOR OF THE			-	

	Rund	Vactoral I	PE AN ACIA	Moutry 57	4440 pl 57	7169 Mise	m Nº 662				
	Z Character			TORKE	Android	cla Visitno)	Asia dd Tre	rio (m2)	31	D46	tation
	Metodo VIZIR		\$78+183	Final 574+200	anche 4.5	Langelad 100	100		5	REGI	TLAS
	TIPO DE FALLA	Colligo	G	RAVEDAD		EXT	NCION	- 4	122	100	
	THOUSE PALLS.	(INV)	1	2	- 1	Arm	Pocentaje	11	H	les) h
Tgo 'A"	Firanse Fiel de Cocodolo	FPC		XX	X	35	1.40%				
Extractorales	Firens longitudinales por fatge	19.7		X		- 11	1.85%		2		
CAN ANNA SING	Buchoo o perchoo (de Sidenceos Tipo A)	- 35			X	.73	1.85%				1
	Figures de contracción hirrora	TCT					4				
clocades	Displacamiento e abultamiento o abuellamiento de la moreia.	DM			х		0.92%				
5	Desirtagescins de les bondes del protentio	0.0					4	130			10
-	Except of the law browness	:8B					4.			4.	
.B. 98 ₁₁	Pérdida de agregados	24						=			
	Historia paneli olicini	FP.									
F	Principla da la pellerda de laperte	. PL					- 1	8	_		

11	Rute	Nacional	PE 3N det i	Siestro 57	4490 46.5	77+68 Man	m Nº 003				
- 11			Prog	cesiva	Anthod	ela Vie (m)	Area del Tea	ne (m2)	h	Calcio	noise
	Metodo Viziri	- 33	Iracio	Final	89/36	Lorgitud	650	17.17.0		800	DVO
		,	2741200	574+308	6.5	180	217		310	ting.	ins
	TIPO DE FALLA	Codigo	- 0	RAVEDAL		EXID	NOW	W	- 14	5.4	b
	100000000000000000000000000000000000000	(INV)	1	2	3	Area	Perrentage		. 84	30	."
Tipo "W"	Fisters Phil 4e Coordelin	FRC	7.11			0.000	-		4		
structurales	Fearus longitudinales per firiga	FLE		1 1 1			+:-		. 4		
	Harton o purches (No Metericons Tipo A)	n n		X.		-1-	1.2%	V 4			
Tipo 'S' Funcionales	Places de contración trittales	FCT		X		- 8	- 1.23%				
	Desplacamiento o abaltaguiento o abustinamento da la cuescia	DM								-2	0
	Desintegración de los bordes del povenunto	.06						-			110
	Exosin de las berreas	100		X.		3	0.49%	2			
	Pórdida de ogregación	PA.						7 =			
	Firene puribolism.	39								30	
F	Pérdida de la paliculo de figaras	PL.						0.01			

			Proje	octive	Areho d	ela Via (m)	Arra del Tour	(Tm) on	li.	Csafe	acion
	Materio VIZIII.		576+300	Final 5741-000	inde-	Lorgitud 110	650		3	REGI	LAR
	THE PRINCE OF	Codigo	0	RAYEDAL	1/1	EXT	OVCK2K		Té.	14.55	
	TIFO DE FALLA	(INV)	1	2	1	Azra	Posterier	11.	10	lan	h
Tipo "A"	Figures 15d de Corpárilo	TNC	X				0.12%		100		
structurales	Fisiana longitudinales por fiega	TLF	X	XX		- 25	3.83%		3		
	Eachon o parahon (de detercorse Tipo A)	. D.	X	XX	X	-349	537%		0 -	1	
1	Figures de contracción térmico.	FCT		XX		15.7	2.4N		V 1		
Tipo 'B' Fundensins	Deglararcento o abaltamento e- almellenáncio de la menda	OM		XX		16	1,6%			,	. 0
	Dorotogranisis de los hordes del posimiento	DB					- N-			1000	200
	Extraide de les bermas	EB					4	- 1		1	
	Pérdicis de agregados	PA									
	Factus peribilicas	17							8 1		
	Pérdida és la pelicula de liguete	PL.									

	Reto	Sections	PE 3N ed l	illémetre 53	4100 st.5	77=00 Stan	ota Nº 965		CONTRACT.		
	AYEMAND CZ		Pring	KERNE :	Antho d	th Visited	Arm dd Tre	no (m2)	- Ju	Cuife	00000
	Metodo VICIE		374:409	Finii 514+500	apolio 6.5	Longitud 110	650		+	RECE	LAS
	THE PERSON NAMED IN	Codino	- 0	RAYFOAL		EXT	NCION	1			
	TIPO DE PALLA	(INV)	1	2	3	Ams	Pavertage	11	16	Tan	ŀ
Tpo 'A'	Fiscate Plat de Coçuditlo	IPC.			X	15	2395		7		
Stracturales	Fixans lengterlendes per fange	FLF	X.			2	0.31%		+		
	Bucket a parcher (de detertores Tipo A)		X		- X	68	30.46%		1	1	
constes	Fixures de contracción técnica	FCT	X			. 4	0.52%			1	
	Desplacamiento o abultamiento n alvacilamiento de la metria	DM	×	X		10.8	1,00%			3	1
	Desintegración de los bondes del portmento	138	X			6.8	1.02%	,			
	Fronist de las bornas	FB			1111					1	
	Pérdicis de agregation	144			X	- 1	0.60%	5			
	Figure pushition	FP							-	1	
	Pérdula de la pelicula de laurre:	PL.									

			frog	exits	Ambo d	ela Via (m)	Arm dd Trur	(finit)	Ji.	Can	wire
			5141.963	First 524-600	anaho 8.3	Longitad 100	(30		3	REG	LAR
	Mining the district	Codigo	Annual State of the last of th	RAYEDAL			NOWN	100	0.5		17.5
	TIPO DE PALLA.	(BIV)	-1	2	3	Acres	Prescribije	15	14	bo	- R
Time take	Fiscure Fiel de Cocodeão	FFC.		X	X	10	923%				
Tipo "N"	Picaras longitudinales por fatiga	PLF	X			. 18	1.50%				
	Buckes a parcheo (de detesiones Tipo A)	- В	X			. 34	8.62%				
cionales	Finnzia de contratolós térmica	PCT				-		_		1	
	Desplatamaceto o abidheraceto si shredismento de la mazela.	DM								3	0
	Desintegración de los bondes del partmento	D9.					- 0				
	Hoosie's de las berrus	104									
	Pérdida de sigregados	FA									
	Fisario pusholion	177	-0-								
	Pérchila de la pelicula de ligerite	PG.	10-25			0					

	Ruto	Vacional	PE 3N 661h	Bienetro 57	4+60 Al 5	7-10 Mus	IO 3P 007			15-57-50	
	Stell Control		Prog	95579	Ancho 6	ala Via (m)	Acre del Trus	ne (mZ)	10	Cess	acion.
	Metode VIZIR		Inicio 574+600	Final 574+709	40cho 6,5	Longitud 100	650		1	REGI	TAR
	Book Colonia	Celigit		RAYEDAD		EXTE	ENCION				
	ALISO DE ENTRY	(EVV)	1	2	3	Am	Porcentajo	и	M	110	ir
Tipe 'A'	Fisuras Piel de Creorinin	FPC	X	X		20	3.08%				
southwes	Escates longitudinales per fitiga	FLF	X			15	2.00%		4		
	Bacheo e parcheo (fie detarioros Tipo A)	11	X		X	637	7.42%				
1	Platata de contrascion térmica	FCT									
Trunctonales	Desplacamiento o abeltamiento o abustiamiento de la receda	DM								,	3
	Descriegraçaies de les bondes del pavamonto	FB			1				-		
	Erosión de las bermas	IIR .						1	1/		
	Precide de apreprios	168	X			0.7	0.05%		1		
8	Pisara yanbibina	FP .									
	Pentida de la pellenta de ligante	.Fl.									

- 1	ASD	- Marketon				17+00 Mue					-
- 1	0.0000000000000000000000000000000000000		Prog	resive	Aricho d	c le Viu (ir).	Arm did Trus	m (m2)	- la	Callo	patien.
	Metodo VIZIR		Inicio 574+700	Final 574:800	anchn 6.5	Longitud 100	65)		3	RECT	LAN
	***************************************	Codgo	G	RAYEDAL		EXT	NOON	S 40			
	THO DUFALLA	(INV)	- 1	2	- 1	Area	Procentage	T.	id	He	jt.
Was tes	Fiscus Fall de Cacadrillo	FPC	T-10						-		
Tipo "A" Estruturales	Finans lenghodinales per fatiga	H.F.	X			- 4	0.62%		1		
	Baches e parciaro (de deteriosos Tipo Al	0.	X			20	3,00%				
Tipe '8" Functionales	Financia de portacción Montres.	FUL		X		6.4	0.98%			1	
	Desplacamiento o abultamiento o abradiamiento de la moreta	DM								3	2
	Desiriograzión de los bosdos del peremento	FB		X		11	1.58%		5-		100
	Erosión de las beruras	II9								1	
	Printida de agregacion	PA.									
	Eleutus paryticikose.	10									
	Pérdida de la pelimita de ligante	FL.									

	Huta 7	Vacional)	ENMI	Sispetra 57	440 45	77+00 Mun	m Nº 009				
	11000		Prog	toire	Assebo d	e la Via (m)	Area del True	no (m2)	5.	Cello	ordes
	Metode VIQUE		\$784600	First 574-900	esobo 6.5	Longitud 100	150		2	380	ENO
	MANAGE SALA	Codigo	(RAVEDAD	1	EXT	NCKIN			1000	
	TIPO DE FALLA	(000)	1	2	103	Arm	Possertaje	H	56.	lea	- 18
Tipe 'A'	Financia Pari de Cocedelo	TPC							6		$\overline{}$
shotrales-	Firetas longitudinales por firiga	FLF									
	Bachee o parcheo (de detenoros Tipo A)	. b	X.			8.6	129%				
4	Finance de contracción térmica	FCT								1	
Goralles	Desplacamento o aboltamento o altra ellamento de la manda	DM								2	
- 5	Desintegrazión de los bordes del partenento	Fit		X		4.7	2/11/6			217	225
78° 69° Fa	Erosión de las benties	- 101		X		5.7	0.88%	1			
	Pécida de agregados	- RA						7 F			
	Fisteria pumb Skus	.07									
F	Pérdida de la pelicula de Sparte	R.									

	Had	-	1001		1000	77+95 Mue	411				_
			Progr	rotion	Anche é	a la Vos (m)	Avea del Tre	no (m2)	h	Calific	MARION
	Metodo VIZIR		374+100	Final 575+000	6.5	Longitud 100	650		1	868	OVO
	STREET THE REAL PROPERTY.	Coligo	. 0	RAVEDAL		EXT	INCHON:		1400	fue	1
	TIPO DE FALLA	(INV)		2	3	/ani	Porcontejo	II	M	100	k
Tipo "A"	Finans Piel de Cocodello	FIC							0		
Estructurales	Finano long toderako por Jolga	FLF									
	Hucheo o guschao (do detenieros Tipe A)	. 8									
Tipo 'B' Funcionales	Fasans de contracción térmica	PCT									и
	Desplamentos o ababamento e abasilamento de la munda	DM								2	
	Desintegración de los bordes del partimento	Fh.		X		- 6	0.32%	. 1	_		
	Ecosi in de las horross	KB.	Y.	Y		63	4326	1			
	Pérdide de agregados	PA									
	Ficure parabólicas	FP									
F	Frincica de la pelicula da ligante	PL.	46 7	1							

			Progr	rosiva .	Aixbe t	ela Via (m)	Accorded Texas	no (m2)	bi -	Caldia	ok6wi
	Metodo VIZIK		3/sicio 575+000	Final \$15+100	6.5	Longitud 160	650		3	RECE	ILAR
1	March and Address	Codgo		RAVEDA:	17	1007	NOON.	12	467	1000	
	THO DE FALLA	(2NV)	1	2	- 3	Arm	Percentajo	II,	М	lier	,
Too 'W'	Fauns Piel de Cocodeia	FFC		X		22.6	3.48%		4		
structurales	Flaurus longitudinales pur fafiga	TLF	0		10-1				2		
	Indice o punhas (de deteriores Tipe A)	n	0.00					7			
cionales	Finans de contracción térmica	PCT									
	Dosplazamento o abultazziente o abustilaziento de la mescia	DM									0
	Desertegrazale de los Boodes del parcasento	JB.		X		10.2	1.57%				
	litosión de las berras	EB		X		10.2	1.57%	2			
	Pérdida de agregados	PA						9			
	Fisures parabolicas	JP .									
	Pérdida de la pelicula de liguete	PL.	At a		7-1			-		-	

	Rosto 7	Vactorial	PE IN AN K	Mocetro 57	0100 al 57	7400 Muss	th Nº 012				
			Progr	min.	Ancho d	e la Via (re)	Area del Tru	ne-bell)	- fa	Casis	CHESON-
	Metodo VIZZS		Inicio	Real	anoho	Longitud	650			DEFIC	HOVE
	The second second	Codigo		RAVEDAL	6.5	SXII	INCSON			THE REAL PROPERTY.	
	TIPO DE PALLA	(DIV)	1	2	123	Ans	Poncentaje	II,	M	Jeb	lt
Tipo W	Finans Fiel de Cesodrile	FFC	X	×		61	3.83%		3		
idructurates -	Financi longitudinales per fittigs	FLF	X	0.00		- 11	3.38%		4		
	Bacheo o guardier (de detentrera Tipo A)	Э	1000	X		15	1.48%		10-6		
1	Faratas de contracción térmica	ECT.			X	7.5	1.15%			1	
Tipo 'fil' Funcionales	Desployamiento e abelturalente o abudamiento de la mezola.	DM							Ę	5	0
	Desartogración de los beodes del pavamento	FB						- 1			
	Errocio de las berroas	13						7		1	l.
	Fredida de agregados	PA]	
	Firana parabólicas	17								1	
	Frintida de la pellocia de ligante	PL.									

	Souta N	(polysist)	PE IN det.	Mantro 57	4+90 of 57	71400 Mise	m Nº 413				
	ALL CONTRACTOR OF THE PARTY OF	_	Prog	reinx	Anche d	e la Via (m)	Arm del Tiva	m (m2)	Js.	CMR	ORNER.
	Metodo VIZIII.		Twelo 575+200	Fiend 5751300	#Khd 6,5	Longitud 100	550		5	DEFIC	IENTE
	TEODEFALLA	Собря	- 0	RAVEDAL		1201	NORON:		1550	1535.00	
	IIPOLIS PALLA	(INV)	- 1	2	- 3	Am	Porsemaje	н	14	ho	12
Tipo 'A"	Fisans Rid de Cocatelo	FPC									
Estructurales -	Financi longitudinales por fictige	FLF.			X	19	2.92%	4			
	Bactico o puedvo (de deseñeros Tipo A)	2		X		- 2	0.31%	4 5		1	
cionales	Framus de contracción térmica	FCT		X		12	1.83%			1	
	Despisormiento o abultarsionto o abrellamiento de la recorla	DM								,	
	Desictegración de los bondes del partimento	F8 :		X		7.5	1.12%	5			60
	Dooride de las berreas	EB		X		0.9	0.14%	2		1	
	Nofata de agregados Faturas parabólicas	Notida de agregados 9A	9A		X	0.2	0.0%	-		1	
	Printida de la policala de ligante	rt								1	

	Huto?	recineal.	PE 3N della	Siessetro 57	4+00 at 57	77460 Mac	D Nº 614				
	50000000000000000000000000000000000000		Prog	mint	Ancho é	ic le Via (m)	Arm del True	ro (m2)	11	Calde	1000
	Metodo ViZilli.		8154308	Fired 1754400	ambo 6.5	Longitud 100	650			REGI	ILAR
	THE PERSON A	Codigo	- 0	RAVEIME)	120	ENCHON:		700	120	100
	TIPO DE FALLA	(INV)	1	2	30	Area	Potreotaje	-If	M	San	h
Tipo "A"	Sisona Piel de Cocodelio	FFC		X		12.5	1.52%		2		
structurales	Financiosgétodinaies per firige.	TLF		X		17	1,0856				
. NO US SERVED	Racheo o purubeo (de ártericara Tipo A	B.	X	X		6.7	1,02%				
	Fisure: de contracción técnica	RT					-				
Sona	Desplanamiento o shubamiento e absellamiento de la mezela	DM								:4	,
- 1	Desintegración de los bordes del povimiento	FB									
	Excesión de las berrias	DB						3			
Įn .	Périlde de agregados	PA			XX	0.5	0.0874	8 8			
8	Fisans penbólicas	FP						- 1			
)F	Portida de la pelicida de ligarte	PL.						8 8			

	Stuta)	Various I	PE 3N del k	Esignetro 57	4+00 x2 57	77+00 Muci	ra Nº 415	was the same			
	A CONTRACTOR		Pang	reine.	Ancho d	r in Vin (m)	Arm del The	re (m2)	la .	Califo	MIN.
	Metodo VIZIR		5751-609	Final 575-580	ancho:	Longitud 300	670		3	REGI	ILAR
	THE PERSON	Codigo	- 0	RAVEINE		EXT	INCION				
	TAPO DE FALLA	05/55	1	2	1.	Arra	Perversion	11	M.	100	b
Tipo "A"	Fistass Piel de Cocadrillo	PFC	700	1000		1200	STOCKS N		2		
DOMESTIC OF	Finans longitudinales per fatiga.	FLF :	X	XX		164	1.68%				
structurales	Fuelson o parcheo (de Grierincos Tipo A)	D	X		- 120	5.4	0.83%				
9	Parama de contracción térmico	PCT			X	LA	0.025%			1	
geogr	Conglistamiento e abullamiento e almellamiento de la menda	DM								3	
- 5	Desintegration de les bordes del puvimento	FB		XX		6.3	0.97%	1		200	
2	Ercsalm de las berrass	EB				17/4/7/	2000000000000				
Tipo 18"	Perdida de agregados	4.5									
8	Finance parabolicas	lb.									
F	Pónista de la pelicula de Lgarga	FL.		-							

	Hura 7	Turn smill	LP TAY ON P	Biocetro 51	4+60 % 53	7+00 Man	10: Nº 014	-	Marian.	-	
	22.50.00101-0		Freg	CONTYN	Antho d	cia Via troj	Area del Taso	no (inC)	B.	Confi	BOOK
	Marodo VXX		3154500 5754500	5954410	ersho.	Longitud 100	636		3	RECE	LAR
	TIPO DEPALLA	Codigo		BAYTDAD		8X13	NCION				
	HISTORPALEA	(INV)	1	2	13	Jess	Percentage	Of.	и	Int.	lt.
1422 San	Franci Piel de Ceredolo	RIC:	X			25	3.85%		14		
Tipo "A" Estructurales	Financkinghadatales per fidge	FLF		X	X	- 17	2.61%		2		
CHORDINA MAN	fluction o purches (do deterioros Tipo A)	3	XXX			25.4	4.93%				
	Fincas de contracción himnica	RCT									
9	Desplacamiento o abultariacido o abunilacidado de la copela.	DM								1	0
8	Desistegración de los boydes, del poyemento	FH						0			2.5
fi.	Erotian de las botross	EB.						0	10-11		
in the	Printida de agregacion	. FA:							3	1	
8	Pistras parabólicas	70									
8	Pérdide de la pelicale de ligente	PL.						1			

	Nata /	factorial .	PE 3N della	Bienerro 57	4+90-4157	77100 Mac	th Nº 017				
	.1992.7300.711		Prings	resive	Antho d	c is Via (m)	Arcs dd Tres	no (m2)	15.	Cuit	noion
	Metodo VIZIII		5754600	Final . 375+700	ancho 6.5	Longitud 100	650		7	REGI	/LAR
	Wild for First 4	Codigo	- 0	RAVEDA		12.7	NCKN	140	7.7	- Quite	100
	TIPO DE FALLA	(DIV)	1	2	3	Atta	Paromities	11,	14	jm:	lt.
The last	Fisano Pel de Cocodela	JPC.	X			. 4	0.62%				
Tipo 'A"	Fisiana longitudinales por fatiga	FLF:	17-						2.2		
Constitution makes	Bacheo o purebeo (de deteriores Tipo A)	- 11	X			3.9	0.61%				
- 8	Frients de contracción terraca	RCT							_		
ional	Desplazamiento o aboltamiento o obtadiamiento de la respela	DM								,	0
5	Dountegrazión de los bordes del passisanto	Fil	X	X		7.1	1,09%	1			
4.	Erraióu de las becrus	631						2			
įa.	Pérdica de agregados	7A		X		0.1	0.03%				
8	Pisteras parabóticas	19								1	
. F	Pircrus parabilicas Pércida do lo policula de Siguria:	FL.	G 2								

11	Sun S	Vertigaal 1	PE JN dei k	Simetro 57	4400 40.55	77+00 Men	da Nº BIB				
	SUB-VEH.ZNES		Progr	rolita	Anthe d	e la Via (m)	Arts 6d You	(Sepons	la	D66	caccions
	Metrido VIZIS		Interior	Final	ander	Longitud	650		4	реле	HENT
		Cidan	375+740	575+800 S.AVEDAL	6.5	100	NCKIN I				
	TIPO DE FALLA	(2500)	. 1	2	- 3	Arm	Parcentage	ır	14	he	tr
Tipo "A"	Finaras Fial de Cosodado	FPC	10000			-					-
	First a longitudinal oper firigs Finder a marches (de dates una Time A)	PLF		X		1.	1,29%		2		
Estructuraires	Bucheo o parabeo (de dalezionas Tipo A)	- H	700	77.						1	
	Figures de contracción trimpica	R7								1	
Too To Functionales	Deglacamiento o abultamiento e abudiamiento de la mosta	DM	-							40	0
P 2	Desirring action de los bondes del proteonto	391		X.		5.1	0.78%	. 1			
84	Erosida de las bostmas	101		X		5.7	0,88%	- 5		1	
- 5	Pécida de agregados	PA.		X		1	1,29%			1	
	Natarus pandróbicos	19	1 = 3							1	
	Pérdide de la policula de ligaror	P1.	11							1	

	Wate.	Nacional	PE 3N delk	Minerro 27	4+66 pl 57	7+00 Must	60 Nº 019				
i			Progr	TOTAL B	Ancho d	t la Via (m)	Associated Tree	(Sarj) na	le .	CVBS	MACON.
	Metodo VIZIR		Imaio	Pitel	-	Longitud	(5)		3	REGI	21.43
			5751880	52540000	5.5	100			-	la given	Link
1	TIPO DEFALLA	Codgo	0	RAVEDAD)	EXT	INCION	40			14
	TOTALLA	SINV	1	2	100	Anta	Poecertaje	11	ld.	las-	le
Tigo "A"	Finana Pieli de Ceccógio	FPC	-				-		-		
Structurales	Ferans kvagitadiesles por firiga	PLF	XX	XX		- 61	7,38%	-	3		
TON NOT BERIDGE	Backeo o paraben (de detenoros Tipo A)	- 8									
1	Financia de contrauccón términa	ECT								15	
100	Deplacamento o abaltamiento o abadlamiento de la muscla	DM								,	
Funcio	Distritograzión de los bonies del pavimento	FB		X		6.3	0.97%			2.5	12
	liposicia de las bertass	. E8				63 9973	1	2			
P	Pérdida de agregados	PA									
180 mg/	Pintana parabolicus	FP									
		91.						0.0		-	

			Piop	rodra .	Andred	ela Via (m)	Ases del Thus	ne (m2)	To .	CNEE	14004
	Metodo VIZIR		Micio 375-960	Final 576-100	arubo 6.5	Lengitud 100	650			REGE	RAR
	TIPO DE FALLA	Coligo	- 0	RAVEDAD	0,7	EXIT	NCION	100	0100	Tuplow	100
	THEO DE PALLA	(INV)	1	2	-3	Arm	Porcertajo	E.	16	30	fz
Tpo 'A"	Fistens Fiel de Coordido	FPC									
	Fisuras longitudinales por latiga	FLF	X			7	1,08%	1	1		
Istructurales	Baches e parcineo (de defenses Tipo A)	11.	XX	X	X	116	17.85%			8	
8	Pouces de contracción sérnice	Per			-				_	2.5	
donales	Dorgiazzmiento o abultamiento o afrasflamiento de la mesola	1961								3	4
5	Desirtegración de los bordes del paymento	FB	X			5.2	130%				1000
ш	Erosión de las borras.	EB						2			
14 of	Pérdide de agregados	PA		X.	X	36	5,54%			3	
2	Fistures parabolices	FP									
F	Prédida de la pelicula de ligares	PL									

	Ruta?	iaclean)	PE 3N del la	Décembre 57	4400 M 5	77100 Mun	62 Nº 623	115-215			
	357-245-3749		Progr	marrie .	Andro 6	e la Via ûnû	Assa did The	ne (m2)	Te.	Calif	400
	Metodo VIZIR		376+000	Find: 516-100	Ataba 4.5	Longitusi 100	650		3	DEFIC	ENT
	THE STREET	Codigo	G	RAVEDAD		120	INCROSH	- 4			
	TIPO DE PALLA	(085)	1	2	3	Ans	Pornermie	R.	14.	-110	ja.
Tipo "K"	Fissons Fini de Cocodeão	FRC				-71	-		0		
Estructurales	Financi longitudinales por lidge	FLF							0		
CHURCHANIS	Bacheo o porebao (de deteriosea Tipo A)	.0			XX	72.5	11.15%			1	
- 2	Planas de compusión terratos	FCT								1	
Some	Desplacariaceto o abultariaceto o shavilamiento de la receda	DM								12	T
5	Desintegración de los bordos del presenento	1.0		X		12	1.85%				
	Erosión de las berreas	8.8		X	X	13.2	2.03%	4		1	
Je.	Pérdide de igregorica	PA			X	19	0.18%			1	
8	Firens panhiless	PP			1	100000				1	
Ε.	Pérdido de la polánula de ligente	Pf.				1		-		1	

			Progr	tyrina .	Ancho d	h Vis (20)	Area del Trur	Grif pe	li	Con	moint
	Metodo VI/III.		\$76+1433	Final 576+100	ancha 6.5	Longitud 100	650			DEFIC	-7219
	PRO DE PALLA	Codigo		RAVEDAD		EXT	DICTON				
	TIPO DE PALLA	(INV)	. 1	2		Arts	Porcentajo	11	16	iso	, N.
Washing .	Financi Pfel de Coccárilo	FFC	771111			-	-		-		
Tipo "A"	alon rituras tergionistates por terga	FLF			X	- 6	0.92%		9		
Structurales 8	Bacheo o pandeo (de deterorse Tipo A)	1)	XX	X	X	72.1	11,00%			1	
- 1	Finance de ecolonoción térmica	FCT								1	
8	Desplacamento o abultamiento e absoltamiento de la mensia	DM;								4	1
- 5	Desintegración de los bordes del pavémento	.FB	Trans.		10			- 1		1	100
ű.	Etrisión da las bermas	EB			-			2		1	
P	Products do agregados:	PA .	1	XX		- 0	1,49%		5	1	
8	Finan probition	FP	3					. []	
F	Pérchée de la policule de ligente	PL								1	

		-	PE BY AND M	-		References.	-		_	177.00	-
- 11	2007		hop	mara.	-	_	Area del Tran	EQ-(HZ)	ь	Califo	acion.
	Mutedo VIZIII.		576+200	576+300	ancho 6.3	Longstod 100	630		5.	DEFIC	HENTE
	7000 00 0000	Coffgo	_	RAVEDAS		_	INCION		-	7.0	12
	TIPO DE FALLA	(000)	- 1	2	-3	/tres	Pomortaje:	H	M	\$10	16
Tipo 'A'	Finanza Piel de Cocodello	FPC		X		. 36	5586		2		
nov of the same of	Fisiona kongitudinales por fatiga	PLF	€ E 11	1012			10000				
attendimen.	Backen o passbar (de deterioros Tipo A)	. 11		X.		24	3.6%			1	
- 3	Firema de contracción Sisteica	FUT									
enoi	Desplazamiento o abultamiento e abuellamiento de la musta	DM								5	0
- 5	Desintegración de los beplas del purimento	FD			X	5,1	0.78%	- 3.11			100.1
6	Ecosión de las bemess	EB						- 3		1	
Tipo di	Pérfids de agregados	.PA								1	
8	Fixums parabilities	FP								1	
#	Pendide de la policula de ligante	PL.									

	Huta !	eclesul	PE 3N date	Simetro 57	9100 M 57	7+00 Mun	da Nº 624	ILLES CO.		Control Carlo	
	Mark Control		hop	miss	-Ancho d	e la Via (no	Ates del Tras	no (m2)	Jr.	Califo	BERON
	Metodo VIZIR		Inno	Final	avda	Longitud	650		190	REGI	
			576+300	5761400	0.5	100	0.00		,	REAL	ILAN
	TIPO DE PALLA	Codeo	.0	RAVEDAL		EXT	NON	ir	14	04	b
	THE CONTRACTOR	(INV)	1	2	3	Area	Porocniaje	41		890	. 11
Tipe "A"	Fisans Pid-4: Cocodnio	FPC		XXX		353	5.0%		2		$\overline{}$
Estructurales	Firems longitudinales por forga	FLF				1000			.4		
	Bacheo o purabero (de deterioros Tipo A)	В	X	XX		. 19.	2.92%				
ž	Finatas de constacción sterrios	FCT		X		15	2,3(%			1	
danos	Desplacamento o alvaltamiento e altardiamiento de la monda	DM								52	0
Š	Desintagristión de los bordes del pareiriento	13			X	4	0.62%			1	
- 6	Excesión de las bermas	ĒB		X		10.2	1.57%	1	1		
gn	Ninfada de agregados	PA.		XX		1.34	0.21%				
E od	Firene peoblicus	F7		-		1.11					
F	Pérdida de la pelionia de ligante	PL.			15						

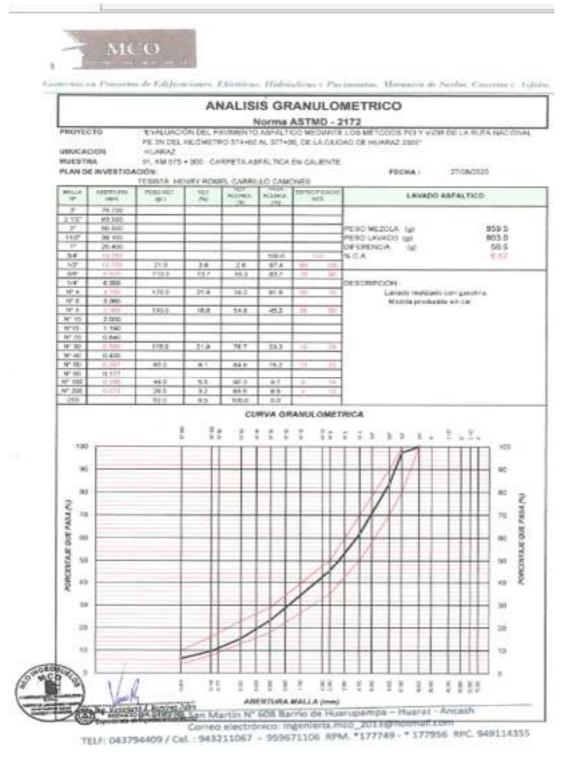
1	NO TRACTOR OF		Pints	DEVE	Ariche 6	cla Vio (m)	Assa Of The	C240 0st	h	CMDe	rhoios
	Mekoda VIZIK		Tricio 576+400	Final 5354 500	#100 6.5	Longitud 180	650			RECU	HAR
1		Craigo	- 0	KAVEDAL		EXT	MCXXM	1	Is		100
	JUNO DE FALLA	(8IV)	1	2	3	Atra	Procestaje	11	18	Jan.	- 31
Take Contract	Fiscas Piel de Corodrilo	IPC.		X		7.6	1.48%		.4.		
Tipo "A" -	Firema longitadinalts per fatga	PLF	the section	177	Visit in	1			1		
ESCHOOLS	Bachic o parches (de dateriores Tipo A)	- 10	X	X	X	703	15896		<u>.</u>		
2	Fatans de contracción térmica	FCT		X		28	430%				
1	Desployamento o abaltamento o altradistrivento de la merella	UM								10	- 1
1	Desirtegnation de los bordes del paramento	79-		X		7.2	1.11%		0.00		
-	Broagen de las berroas	18			X	5.6	1,02%	1			
· p	Perdok de agregados	PA			×	2.4	0.40%				
8	Finana patibolicas	59			110	175.5 11.65					
1	Priviledo de la policiala de ligardo	PL	1							/	

	Retor	Nactorod I	PE IN del ki	Monetro 57	4+00 al.57	7+08 Muss	to Nº 826		1100		
		Pripe	CNIVA	Andrede in Visitor)		Area del Trans (m2)		- 34	- Californi		
	Metodo VIZIR		375+533	Frail 570+900	ancho:	Longitud 100	(50	150		REGR	LAR
i		Coligo	0	RAVEDAD	1	EXT	NON.				×
	TIPO DE FALLA	(00%)	1	2	1	Acce	Poscentaje	II.	М	he.	
Tips "A"	Fisura Piel de Cocodelio	FFC	X			30	4,92%		2		
	Fasuras longitudinales per firiga	TLF		X		3	0.46%				6
	Buchen o purcheo (de detenioros Tipo A)	- 11	X	X	X	64	9,85%			y:	
	Plagata de contesación obrasos	8.7		X		. 14	3,075				
8	Desplazamiento o abultación to o abiedismiento de la munda	DOK									
3 1	Desintegración de les bordes del protenente	FB						-	1		
Tipo dr.	Errosidet da los bermas	109	4		XX	168	2,58%	1	1	1	
	Périlida de agragados	. PA.			-				5-12	1	
	Finant perahiticas	FP.									
=	Principia de la prijusta de Sante	PL.									

	Hutu?	suchequal i	PE AN ANN	Sinutro 57	4100 ± 57	7410 Mari	tts Nº 617				
		Frog	resian.	Anico de la Vis (m)		Area oid Trame (m2)		lt.	California		
	Metodo VIZIII		fricio	Pinst	ancha	Longitud	650		5	DEFICIENT	
				576+600 576+700		6.5 100				Sec iciasti	
	TRODEFALLA	Codigo		GRAVEDAD EXTENCION		NCION	H.	M	Ten	li li	
	THOREFALLA	(0000)	- 1	2	10.3	Ans	Prometry		701	100	
Tipe "A" Extracturales	Pasares Piel de Cocodeilo	TTC		X	X	-56	8,62%		- 1		
	Haune longiturinoles por firige	RF									1
	Bactico o puncturo (de detenioses Tipo A)	В	J	X		1.8	0.29%		U di		
- 8	Pirama de contracción férmica.	PUT			XX.	22.4	3,679			1	3
Tgo 'B' Funcionals	Desplazaraiento o abultanderio e altra il unicetto de la mescia	DM					200000			3	
	Descringración de los booles del pasimento	FIL			X	T.	1.29%	1			
	Oroxión de las Seemas	137			XXX	15.4	2,32%				
	Pándida do agregados	FA.			X	8.72	0.02%	- 1]	
	Finans postbólem	1P									
F	Pérdida de la pelicula de liguete	PL.									

AND ADDRESS OF SELECTION

		Prog	10079	Anobo d	e la Vin (m)	Arm del Transe (m2)		- In	Ciddracin		
	Metodo VIZIR		376+700	Figur 1764-800	orate 6.3	Longitus 100	631			REGULAR	
		Codigo	. 0	RAVEDAL		EXTE	NCEN	ICHON		Tes	1
	TO DE FALLA	(INV)	1	2	13	Aria	Porcentage	K 1	14	1909	
Tipo 'A' Estructurales	Plantus Piel de Cocodrile	FPC		X		5.0	0.83%				
	Panens limphodinales per fatiga	PLF									ì
	Butheo o paylee (de delenous Tipo A)	B	XXX	XXXXX.	XX	121.1	18.63%				
ionales	Pateras de contracción termica	11.7			X	4.2	6,63%				
	Desplazamento o shubamiento o grasilizmiento de la associa	UM		×		1.6	0.25%			1	
10000	Desintegración de los bordes del poromesto	FD		X		1.2	0,08%	2			
	Escuido de las hermas	EB.		X	Profession.	2.1	932%	4 [
	Pérdéla de agregadon	PA			χ	0.04	9.0014				
Teo T	Fatnes parabilities	FP			-		1107120	1		5	
=	Pérfids de la prisoda de ligares	PL.		X.		1.0	1.23%				

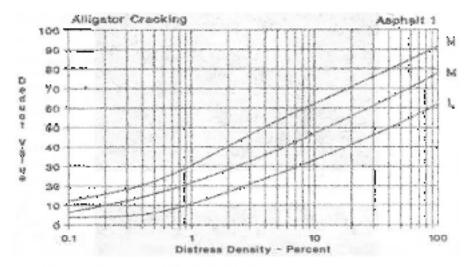

		-	PK 3N delk		-	0.00			_	0.04	
	Control of Control	- 11	and the second division in the second	TOXIVE .	Electrical Services	and the second second second	Arrs del Tiamo (m2)		36	CARRONIC	
	Microsio VIZIR.		bias	First		Longitud	630	- 1	,		
- 4			3764813 3764900		6.5 100				150	S16 73 57 55	
- 1	(MIC PRINCIPALLY	Codigo	. 0	RAVIDAL		EXII	NOON	H	44	Tes.	R
	THO DE PALLA	(INV)		2		Am	Processje.		16	Do.	
Tipo "A" Estricturales	Finana Piel de Cocodelo	FFC.	X			3	0.46%				
	Fixana longitudinales per fatiga	FLF									
	Badaco e pantheo (de deterioros Tipo A)	- 8	XXX	X	X	-014	6.83%				
onahu	Pluaras de ocultucidos térmico	PCT		X		13	(25%)				
	Desplacamiento o abultamiento e almeliumiento de la mercia	DIM								3	0
- 5	Desiringración de los bordes del peracunto	FB		X		22.5	3.66%				
Tipo off	Estesión de las bermas	EB		133	1	7.5	12.38	3			
	Pitrátida de agregados	PA.		XX		1:10	0.15%				
	Favana parabélinas	TP				2	1277				
E	Pérdida de la pelicula de lignete	M.									1

9	Ruta !	fuctional I	PE 3N del la	Démortro 57	4+68 of 57	7+00 Muss	In Nº 138				
1		Progenica An		Andre de	Anche de la Via (m)		no (nl)	- lu	Californite		
	Metode VSSR		fisicio	Pinsi	encha	Longitud	630			DEFICIENTS	
			576+900	577+000	8.5	100	1000	***		DEF IC	DEPT. SENTE
- 1	THE PERSON A	Codgo	CRAVEDAD)	1201				ho	11.
	TIPO DE FALLA	CHYS	1	2	1	Acre	Percentage	II	34	340	- Ac
Tipo "A" Extraturales	Fistana Fist de Cosodaio	FFC	X	X	X	36	5.56%	1 3	977		
	Pisters longitudinales por fatiga	FLF	1000						- 2		D
	llacken o packeo (de detencros Yipo A)	. 0		XXX		36:	5.85%				
	Fiscas de contracción térmica	PCT	-	X		18.	2.77%	1/2 5			
8	Desplacemento o abultamento o abultamiento de la messia	DM		7						3	
5	Derkstegración de los bondos del pavimento	JH.								1	
Too Tr	Erosine de las burnas	EB.	1				Tarana I	7		1	
	Printide de apropados	PA:		X		0.6	0.00%			1	
	Piroras parabolicas	FP		100	-					1	
100	Principle de la posseula de Squeta	71.	1							1	

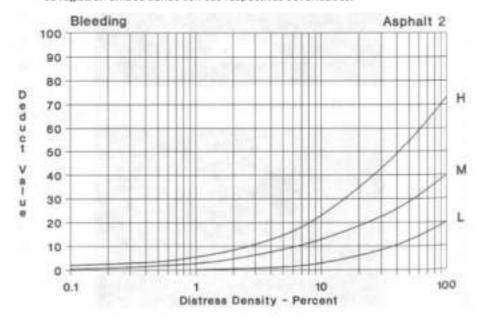
CREC 10

Anexo D 2. Resumen de Análisis y resultado N° 3 método VIZIR

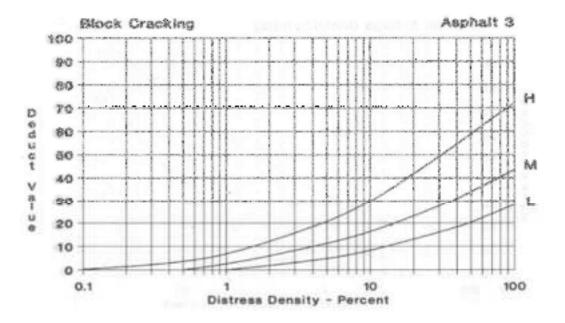
	RESUMEN DE CALIFICACIÓN - METODO VIZIR										
N	PROG	RESIVA	Area del	Area deteriorada	RANGO DE	CALIFICACION					
MUESTR	Inicial	Final	Tramo (m2)	(m2)	Valor	Calificación					
M - 001	574 + 000.00	574 + 100.00	650	93.9	3	REGULAR					
M - 002	574 + 100.00	574 + 200.00	650	98	5	REGULAR					
M - 003	574 + 200.00	574 + 300.00	650	19	2	BUENO					
M - 004	574 + 300.00	574+ 400.00	650	86.2	3	REGULAR					
M - 005	574+400.00	574 + 500.00	650	111.6	4	REGULAR					
M - 006	574 + 500.00	574 + 600.00	650	126	3	REGULAR					
M - 007	574 + 600.00	574 + 700.00	650	81.5	3	REGULAR					
M - 008	574 + 700.00	574 + 800.00	650	40.4	3	REGULAR					
M - 009	574 + 800.00	574+ 900.00	650	18.3	2	BUENO					
M - 010	574+900.00	575 + 000.00	650	12.3	2	BUENO					
M - 011	575 + 000.00	575 + 100.00	650	43	3	REGULAR					
M - 012	575 + 100.00	575 + 200.00	650	103.1	5	DEFICIENTE					
M - 013	575 + 200.00	575 + 300.00	650	41.6	5	DEFICIENTE					
M - 014	575 + 300.00	574+ 400.00	650	26.7	4	REGULAR					
M - 015	574+400.00	575 + 500.00	650	23.5	3	REGULAR					
M - 016	575 + 500.00	575 + 600.00	650	71.4	3	REGULAR					
M - 017	575 + 600.00	575 + 700.00	650	15.2	3	REGULAR					
M - 018	575 + 700.00	575 + 800.00	650	26.8	4	DEFICIENTE					
M - 019	575 + 800.00	575+900.00	650	54.3	3	REGULAR					
M - 020	575+900.00	576 + 000.00	650	164.2	4	REGULAR					
M - 021	576 + 000.00	576 + 100.00	650	98.6	5	DEFICIENTE					
M - 022	576 + 100.00	576 + 200.00	650	81.1	5	DEFICIENTE					
M - 023	576 + 200.00	576 + 300.00	650	65.1	5	DEFICIENTE					
M - 024	576 + 300.00	576+ 400.00	650	84.84	3	REGULAR					
M - 025	576+400.00	576 + 500.00	650	157	4	REGULAR					
M - 026		576 + 600.00	650	139.8	3	REGULAR					
M - 027	576 + 600.00	576 + 700.00	650	104.72	5	DEFICIENTE					
M - 028	576 + 700.00	576 + 800.00	650	143.66	4	REGULAR					
M - 029	576 + 800.00	576 + 900.00	650	82.9	3	REGULAR					
M - 030	576 + 900.00	577 + 000.00	650	92.6	5	DEFICIENTE					
			PRC	OMEDIO	3.63333333						
			PROMEDIO	REDONDEADO	4	REGULAR					



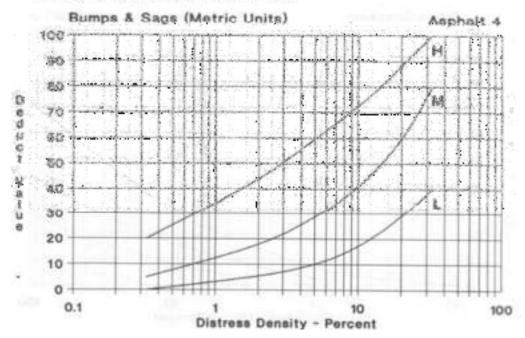
menta en Pouveran de Edeferaciones, Eléctricas, Hidrialism y Parimentas, Meximies de Suelas, Cauceria y Urbita,


ANALISIS GRANULOMETRICO Norma ASTMD - 2172 PROYECTO EVALUACION DEL PAVIMENTO ASPALTICO MEDIANTE LOS METODOS PO Y VIZIR DE LA RUTA FLACIONAL PE 3N DEL RILOMETRIO 574+00 AL 577+00. DE LA CIJOAC DE HUARAZ 2003" UBUCACION HUARAZ MUESTRA 61. KM 976 + 009 - CARPETA ABPÁLTICA EN CAUENTE PLAN DE INVESTIGACIÓN: FECHA! 22/08/2020 TESISTA, HENRY ROWEL CARRILLO CAMONES MARKET MARK NAMEDIA LAVADO ARFALTICO 75.200 2.10 63.500 PERO MEZGLA (B) 90,900 110 PESO LAVADO (g) 850 C 25 400 DIFERENCIA (a) 50.0 3.4 WCA 0.42 120.0 953 824 32° 14.0 DESCRIPCION 10.0 M18 M18 M18 M18 3.389 Miscrite production size cut. 1400 16.3 116 461.4 2 000 N° 20 0.840 190.0 25/3 10" 40 0.429 N°50 42.3 67.5 1.4 Nº 50 61 177 6.0 118 35.4 67 50.1 230 CURVA GRANULOMETRICA 11111 \$5 5 5 5 8 9 8 1 B 1 B 1 B 1 nad 1001 100 80 41 **OW PASARY** PASA 70 90 100 60 PONCENTALI PONCENTAL 190 60 40 46 30 30 36 76 10 16 88 8 6 8 8 8 8 8 8 8 8 8 8 5 3 5 5 5 NUMBER | BERINE MED ABERTURA MALLA (NUM) Maria Min Nº 608 Barrio de Huarupampa - Huaraz - Ancash

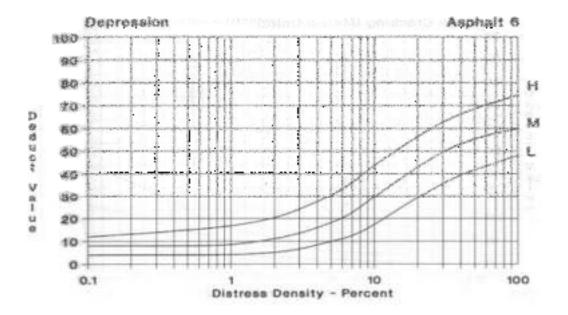
Correo electrônico: Ingenieria mco 2013@Notwar.com TELF: 043794409 / Cel.: 943211067 - 959671106 RPM. *177749 - * 177956 RPC. 949114355 Curvas de valores deducibles por daño y curva de corrección del valor deducible total para pavimentos asfálticos de vías


1. Piel de Cocodrilo (fatiga).

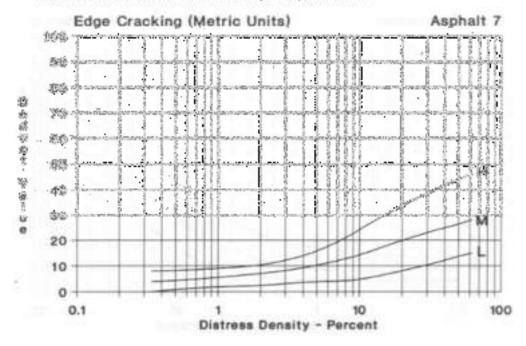
Agrietamiento por fatiga. Si se presenta Ahuellamiento en la misma área se registran ambos daños con sus respectivas severidades.


2. Exudación.

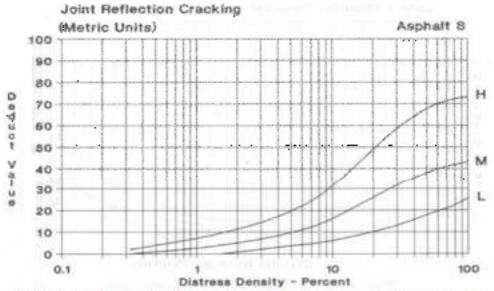
Película superficial de material bituminoso.


3. Agrietamiento en Bloque.

Proceso de fisuración por ciclos térmicos.

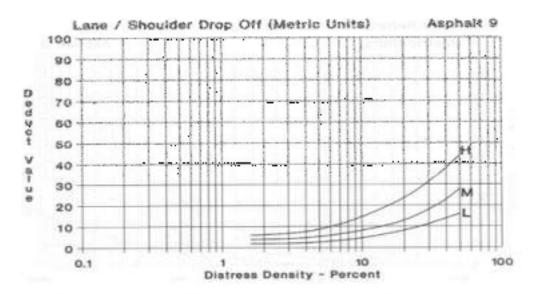

4. Abultamientos y Hundimientos (sistema métrico).

Desniveles puntuales de la superficie del pavimento.

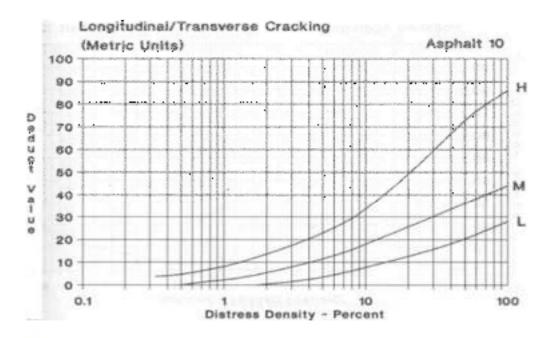

6. Depresión.

Área localizada con un nivel más bajo del pavimento.

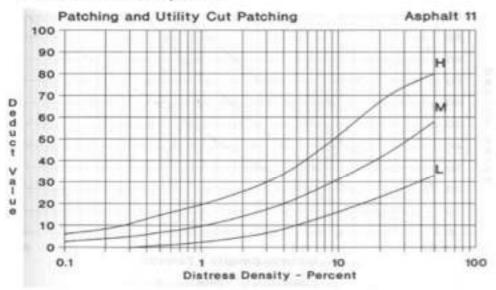
7. Grieta de Borde (sistema métrico).


Deterioro del borde del pavimento.

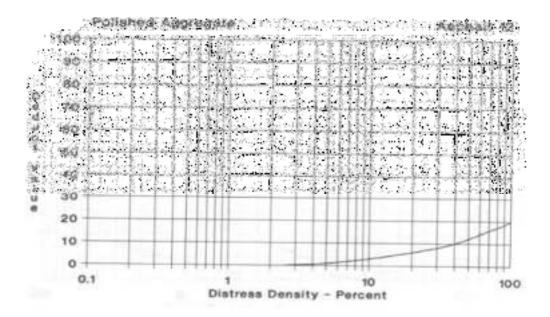
8. Grieta de Reflexión de Juntas de Pavimento Subyacente de Concreto de Cemento Pórtland (sistema métrico).


No se aplica para la reflexión de fisuras o grietas de otro tipo de capas subyacentes.

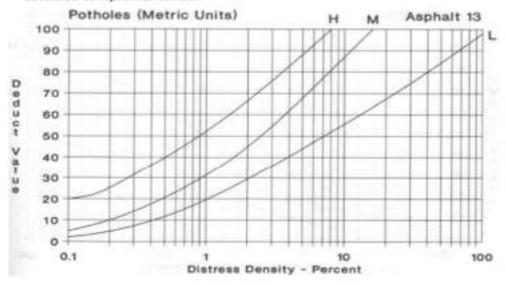
Fuente Guía: Vásquez


9. Desnivel Carril / Berma (sistema métrico).

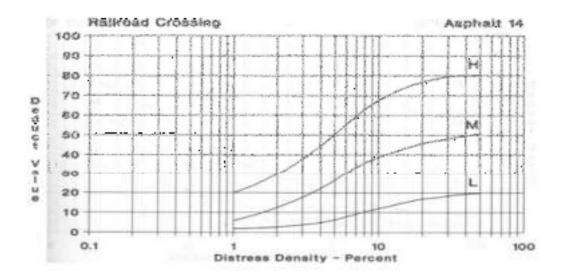
Diferencia de niveles entre el borde del pavimento y la berma.


10. Grietas Longitudinales y Transversales (sistema m

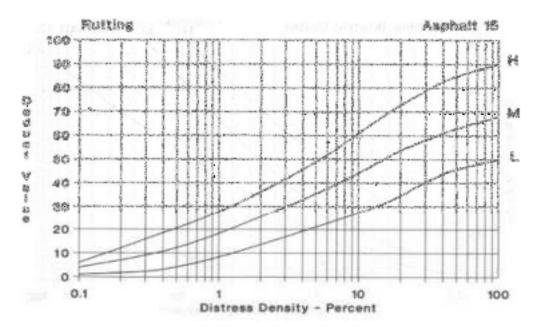
No deben incluirse grietas de reflexión de juntas de pavimento de concreto hidráulico subyacente.


11. Parcheo y Acometidas de Servicios Públicos.

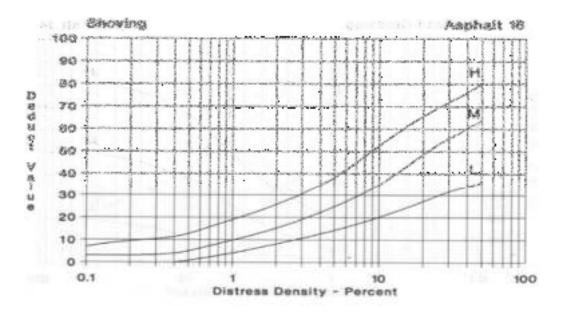
Áreas donde se ha reemplazado el pavimento original.


12. Pulimento de Agregado.

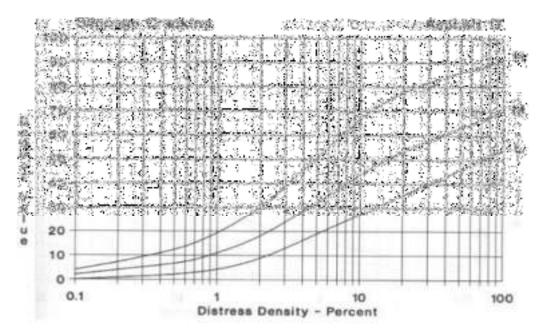
Degradación del agregado superficial de la mezcla asfáltica. Requiere estudios complementarios.


13. Huecos (sistema métrico).

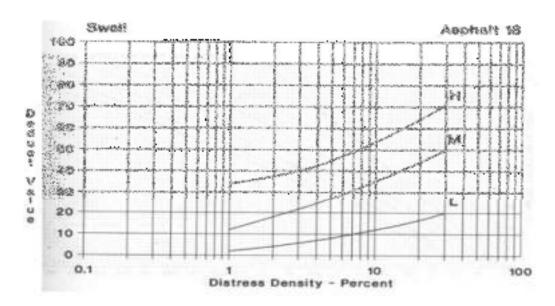
Depresiones de la superficie del pavimento por pérdida de material de la estructura.


14. Cruce de Vía Férrea.

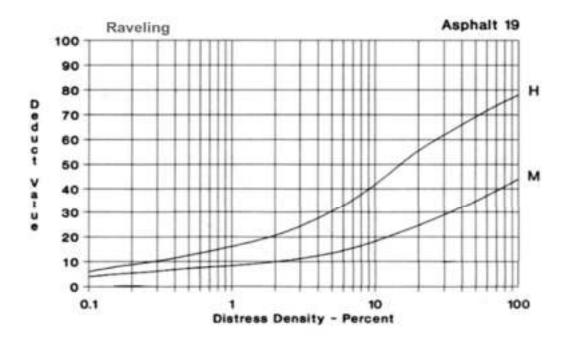
Describe la condición general del cruce y su efecto sobre el usuario.


15. Ahuellamiento.

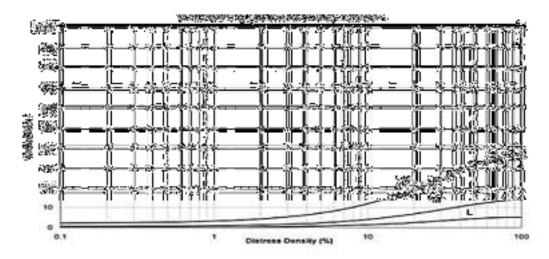
Depresión en la superficie de las huellas de las ruedas. Si se presenta Piel de Cocodrilo en la misma área, se registran ambos daños con sus respectivas severidades.


16. Desplazamiento.

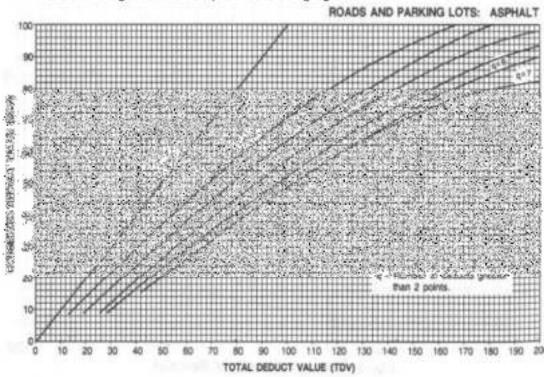
Corrimiento permanente de un área de la superficie del pavimento.


17. Grietas Parabólicas o Por Deslizamiento.

Producidas por las maniobras de frenado o giro en mezclas asfálticas de baja resistencia o con un riego de liga inadecuado con la capa subyacente.


18. Hinchamiento.

Pandeo hacia arriba de la superficie del pavimento en una onda de más de 3.0 metros de longitud. Asociado a procesos de congelamiento o expansión de la subrasante.


19. Desprendimiento de Agregado Grueso.

Pérdida de partículas de agregado grueso por mala construcción.

20. Meteorización (Desgaste Superficial).

Pérdida del ligante asfáltico y la matriz de agregados fino.

Curva de corrección del valor deducible total para pavimentos asfálticos de vías y estacionamientos.

El valor de q es el número de deducibles mayores que dos (2) puntos.

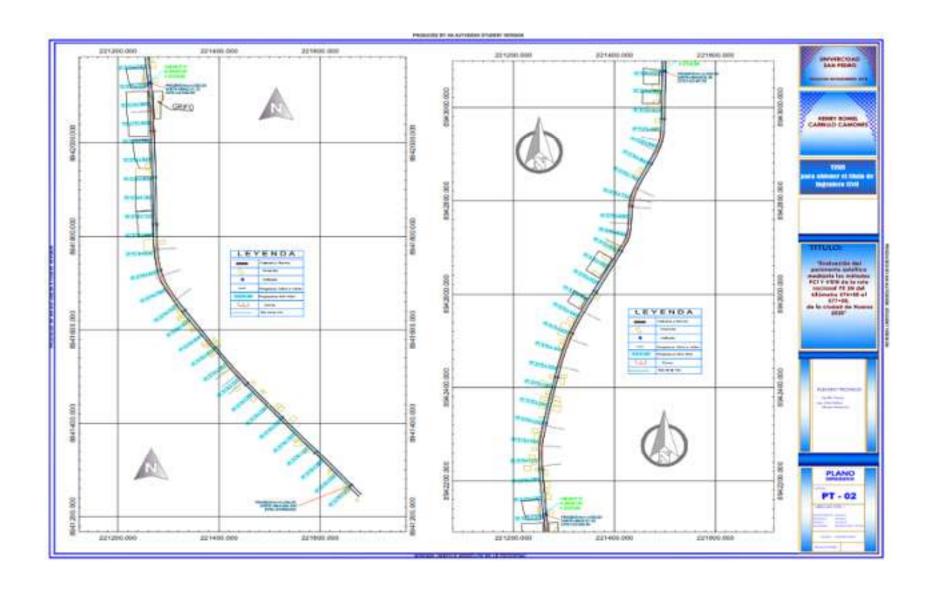
Panel fotográfico: Evaluación método PCI y VIZIR

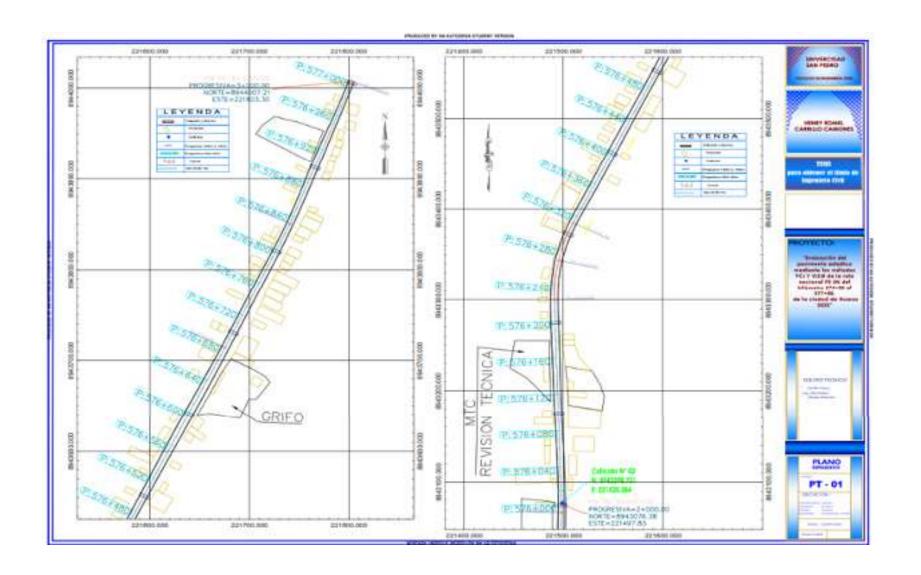
Fotografía N° 01 Señalización con pintura blanca de los límites de daño deteriorado

Fotografía N° 02 Recorrido con odómetro de ruedas para marcar las progresivas e identificar las distancias de las fallas y el metrado.

Fotografía N° 03 identificación de la falla: grieta de borde – alta severidad (PCI), desintegración de los bordes erosión extrema (VIZIR)

Fotografía N° 04 identificación de la falla: Desplazamiento – Media Severidad (PCI), Desplazamiento o Abultamiento o Ahuellamiento de la mezcla, profundidad 20mm – 40mm (VIZIR)


Fotografía N° 05 identificación de la falla: Piel de Cocodrilo – alta Severidad (PCI), Fisura de piel de cocodrilo, profundidad <200mm con pérdida de material (VIZIR)



Fotografía N° 06 identificación de la falla: grieta parabólica o por deslizamiento – alta Severidad (PCI Desplazamiento o Abultamiento o Ahuellamiento de la mezcla, profundidad > 40mm (VIZIR)

Fotografía N° 10 Extracción de la muestra, de la capa de rodadura, solo fue de 2 ½" de espesor.

Apéndice 01: Procedimiento para la metodología VIZIR

Tabla B 1. Daños de tipo A - VIZIR

NOMBRE DEL DETERIORO	CODIGO (INV)	UNIDAD DE MEDIDA
Ahuellamiento	АН	М
Depresiones o hundimientos longitudinales	DL	М
Depresiones o hundimientos transversales	DT	М
Fisuras longitudinales por fatiga	FLF	M
Fisuras piel de cocodrilo	FPC	M
Bacheo o parcheo (de deterioros Tipo A)	В	М

Fuente: Elaboración propia, adaptado de Vásquez

Tabla B 2. Años de tipo B - VIZIR

NOMBRE DEL DETERIORO	CODIGO (INV)	UNIDAD DE MEDIDA
Fisura longitudinal de junta de construcción	FLJ	M
Fisura transversal de junta de construcción	FTJ	M
Fisuras de contracción térmica	FCT	M
Fisuras parabólicas	FP	M
Fisuras de borde	FB	M
Ojos de pescado	О	UND
Desplazamiento o abultamiento o ahuellamiento de la mezcla	DM	M
Pérdida de la película de ligante	PL	M
Pérdida de agregados	PA	M
Descascaramiento	D	M2
Pulimento de agregados	PU	M
Exudación	EX	M
Afloramiento de mortero	AM	M
Afloramiento de agua	AA	M
Desintegración de los bordes del pavimento	BD	M
Escalonamiento entre calzada y berma	ECB	M
Erosión de las bermas	EB	M
Segregación	S	M

Fuente: Elaboración propia, adaptado de Guía INVIAS

Tabla B 3. Niveles de gravedad de los deterioros del tipo A - VIZIR

	NIVI	EL DE GRAVEDAD	
DETERIORO	1	2	3
Ahuellamiento y otras deformaciones estructurales	Sensible al usuario, pero poco importante. <20mm	Deformaciones importantes. Hundimientos localizados o ahuellamientos.	Deformaciones que afectan de manera importante la comunidad y la seguridad de los usuarios >40mm.
Fisuras longitudinales por fatiga.	Fisuras finas en la huella de rodamiento. <6mm	Fisuras abiertas y a menudo ramificada	Fisuras muy ramificadas y/o abiertas (Grietas). Bordes de fisuras ocasionalmente degradados.
Piel de cocodrilo	Piel de cocodrilo formada por mallas grandes (>500mm) con fisuración fina, sin pérdida de materiales.	Mallas más densas (<500 mm), con pérdidas ocasionales de materiales, desprendimientos y ojos de pescado en formación.	Mallas con grietas muy abiertas y con fragmentos separados. Las mallas son muy densas (<200mm), con perdida ocasional o generalizada de materiales
Bacheos y parcheo	Intervención de superficies ligadas al deterioro del tipo B.	Intervenciones ligad Comportamiento satisfactorio de la reparación.	as a deterioros tipo A Ocurrencia de fallas en las zonas reparadas

Fuente: Guía INVIAS (2008, p. 68)

Tabla B 4. Niveles de gravedad de los deterioros del tipo B - VIZIR

		N	IVEL DE GRAVEDAD		
DETER		1	2		3
DETER	IORO				
Fisuras longitud de constr	•	Fina y única	Ancha (10mm o más) sin desprendimiento o fina ramificación.	despren	cha con dimientos o ificada
Fisuras de contracción térmica		Fisuras finas. <6mm	Anchas sin desprendimiento o finas con desprendimientos o fisura ramificada.		has con adimientos.
Fisuras pa	rabólicas	Fisuras finas. <6mm	Anchas sin desprendimientos	despren	has sin dimientos
Fisura de	e borde	Fisuras finas. <6mm.	Anchas sin desprendimientos		chas sin ndimientos
Abultan	Abultamientos		20 mm < F < 40 mm	F >	40 mm
Ojos de pescado (por	Cantidad	<5	5 a 10 /<5	>10	/5 a 10
cada 100m)	D mm	≤300	≤300 /≤1000	≤300) /≤1000
Desprendimient película de Pérdida de	e ligante.	Perdidas aisladas	T Perange comminge 1		eneralizadas y marcadas
Descascaramiento	Prof.(mm)	≤25	≤25	≤25	≤25
Descascaramiento	Área(m2)	≤0.8	≤0.8	≤0.8	≤0.8
Pulimentos	agregados	Long. Comprometida <10% de la sección (100).	Long. Comprometida ≥10% <50%de la sección (100).		omprometida sección (100).
Exuda	nción	Puntual	Continua sobre la banda de rodamiento donde circulan las ruedas del vehículo		muy marcada ersas áreas
Afloramientos d agu		Localizados y apenas perceptibles	Intenso	Muy	intensos
	Desintegración de los bordes del pavimento		La calzada ha sido afectada en un ancho de 500 mm o mas	Erosión extrema que conduce a la desaparición del revestimiento asfáltico	
Escalonamiento berr	•	Desnivel de 10 a 50 mm	Desnivel entre 50 y 100 mm	1	superior a 100 mm
Erosión de l	as bermas	Erosión incipiente	Erosión pronunciada	peligro la es calzada y la	ión pone en stabilidad de la a seguridad de asuarios

Fuente: Guía INVIAS (2008, p. 69)

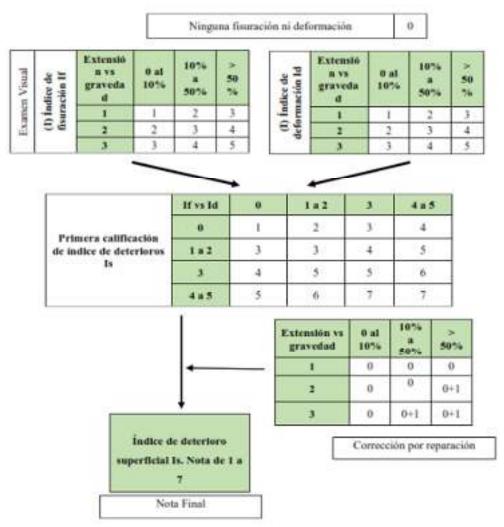


Figura B 1. Muestra el diagrama de flujo para el cálculo del índice de deterioro superficial (Is).

Fuente Guía: INVIAS (2008, p. 211)

Tabla B 5. Clasificación del estado de superficie del pavimento según VIZIR

CALIFICACION	Is
Condición buena	1 - 2
Condición marginal	3 - 4
Condición deficiente	5 - 7

Fuente: Guía INVIAS (2008, p. 212)

Tabla B 6. Posibles técnicas de rehabilitación para los deterioros de VIZIR

		To	écnicas de Re	habilitación				
Tipo de deterioro	Restauración	Refue	erzo	Recic	Reciclado		Reconstruc ción Tratamientos Pre	
Fisura Longitudinal	Tratamiento Marginal - Lechada asfáltica Microaglomerado (en frío o caliente) - Sello arena -asfalto	Tratamiento Adecuado - Sobrecapa estructural Tratamiento Marginal - Fresado y sobrecapa		Se requierer productos o		Se requieren técnicas o productos especiales	Tratamiento Adecuado - Geotextiles - Geomallas	Tratamiento Marginal - Sello de grietas
Piel de cocodrilo	Se requieren técnicas o productos especiales	Tratamiento - Sobrecapa		- Reciclado en planta en		Tratamiento Adecuado - Remoción y reemplazo de capas. Whitetopping	Tratamiento Adecuado - Bacheo	Tratamiento Marginal - Mejoramiento del drenaje Geotextiles -Sello de Grietas Fresado
Fisura Transversal	Tratamiento Marginal - Lechada asfáltica Microaglomerado (en frío o caliente).			Tratamiento Adecuado - Reciclado superficial en caliente Reciclado en planta caliente.	Tratamiento Marginal - Reciclado en frío en el sitio.	Tratamiento Marginal - Remoción y reemplazo de capas. Whitetopping	- Sello de	Tratamiento Marginal - Parcheo Bacheo. Microfresado - Fresado.
Fisura por reflexión	Tratamiento Marginal - Lechada asfáltica. Microaglomerado (en frío o caliente).	Tratamiento - Sobrecapa - Fresado y	estructural.	Tratamiento Adecuado - Reciclado superficial en caliente.	ratamiento Marginal - Reciclado en frío en el sitio.	Tratamiento Marginal - Remoción y reemplazo de capas. Whitetopping	Tratamiento Adecuado - Geotextiles - Geomallas - SAMI Sello de grietas.	Tratamiento Marginal - Parcheo - BacheoMicrofresado Fresado.

				- Reciclado en planta en caliente.			- Ruteo	
Fisuras de contracción térmica	Tratamiento Marginal - Lechada asfáltica Microaglomerado (en frío o caliente).	Tratamiento Adecuado - Fresado y sobrecapa.	Tratamiento Marginal - Sobrecapa estructural.	Tratamiento Adecuado - Reciclado superficial en caliente Reciclado en planta en caliente		Tratamiento Marginal - Remoción y reemplazo de capas. Vhitetopping.	Adecuado	Tratamiento Marginal -Geotextiles -Geomallas - SAMI Sello de Grietas.
Fisuras de Borde	Tratamiento Marginal - Tratamiento superficial Lechada asfáltica. Microaglomerado (en frío o caliente).	Tratamiento Adecuado - Fresado y sobrecapa.	Tratamiento Marginal - Sobrecapa estructural		nte. n frío en el o. en planta en		Tratamiento Adecuado - Bacheo.	Tratamiento Marginal Mejoramiento del drenaje Geotextiles -Geomallas - Sello de grietas.
Ahuellamiento	Se requieren técnicas o productos especiales.	Tratamiento - Sobrecapa - Fresado y	estructural.	Tratamiento Adecuado -Reciclado superficial en caliente Reciclado en planta en caliente.	Tratamiento Marginal - Reciclado en frío en el sitio.	Tratamiento Adecuado - Remoción y reemplazo de capas. Whitetopping	- Parcheo. - Bacheo. - Fresado. - Relleno de	Tratamiento Marginal Mejoramiento del drenaje. Microfresado.

Ondulaciones	Tratamiento Adecuado - Sobrecapa delgada.	Tratamiento Adecuado - Fresado y sobrecapa.	Tratamiento Marginal - Sobrecapa estructural	Tratamiento Adecuado - Reciclado superficial en caliente.		Tratamiento Marginal - Remoción y reemplazo de capas. Whitetopping	Tratamiento Adecuado - Parcheo. - Fresado. - Microfresado	Tratamiento Marginal - Bacheo Capa de nivelación
Abultamiento	Tratamiento Marginal Sobrecapa delgada.	Tratamiento Adecuado - Sobrecapa estructural Fresado y sobrecapa.		Tratamiento Adecuado - Reciclado en frío en el sitio Reciclado en planta en caliente.	Tratamiento Marginal - Reciclado superficial en caliente.	Tratamiento Adecuado - Remoción y reemplazo de capas. Whitetopping	- Bac - Fre	cheo. cheo. sado.
Depresiones	Tratamiento Marginal Sobrecapa delgada.	Tratamiento Adecuado - Sobrecapa estructural Fresado y sobrecapa.		Tratamiento - Reciclado en f - Reciclado e calien	río en el sitio. n planta en	Tratamiento Adecuado - Remoción y reemplazo de capas. Whitetopping	Adecuado	Tratamiento Marginal - Parcheo. Mejoramiento del drenaje Relleno de zonas huelladas.
Descascarami ento		Tratamiento - Sobrecapa		Tratamiento Adecuado - Reciclado en planta en caliente.	Tratamiento Marginal - Reciclado en frío en el sitio.	Tratamiento Adecuado - Remoción y reemplazo de capas. Whitetopping	Tratamiento Adecuado - Bacheo.	Tratamiento Marginal - Geomallas

Ojo de Pescado			Tratamiento Adecuado - Sobrecapa estructural.	Tratamiento Marginal - Fresado y sobrecapa.	Tratamiento Adecuado Reciclado en planta en caliente.	Tratamiento Marginal - Reciclado en frío en el sitio.	Tratamiento Adecuado Remoción y reemplazo de capas. Whitetopping	o Adecuado- Bacheo.- Geomallas	Tratamiento Marginal - Parcheo Geotextiles
Pérdida de agregados	Tratamiento Adecuado Tratamiento - superficial - lechada asfáltica, Microaglomerado (en frío o caliente) Mezcla drenante Sobrecapa delgada.	Tratamiento Marginal - Riego en negro Sello arena -asfalto.	Tratamiento Adecuado - Fresado y sobrecapa.	Tratamiento Marginal - Sobrecapa estructural.	Tratamiento Adecuado - Reciclado superficial en caliente Reciclado en planta en caliente.		Tratamiento Adecuado - Remoción y reemplazo de capas. Whitetopping	Tratamiento Adecuado - Parcheo Bacheo Geotextiles - Geomallas - Relleno de zonas ahuelladas.	Tratamiento Marginal Mejoramiento del drenaje. - Microfresado
Pérdida de ligante				to Marginal a estructural.			Tratamiento Adecuado - Remoción y reemplazo de capas. Whitetopping	Tratamiento Adecuado - Bacheo.	Tratamiento Marginal -Geotextiles - Geomallas
Pulimento de agregados	Tratamiento Adecuado - Tratamiento superficial Lechada asfáltica.	Tratamiento Marginal -Sello arena - asfalto Sobre capa delgada.	Tratamiento Adecuado - Fresado y sobrecapa	Tratamiento Marginal - Sobrecapa estructural.	Tratamiento Adecuado - Reciclado superficial en caliente.	Tratamiento Marginal - Reciclado en planta en caliente.	Tratamianta	Tratamient - Pare - Bac - Free	cheo. cheo. sado.

	 Micro aglomerado (en frío o caliente). Mezcla drenante 							
Segregación	Tratamiento - Sobrecapa		Tratamiento Marginal - Sobrecapa estructural Fresado y sobrecapa.	Tratamiento Adecuado - Reciclado en frío en el sitio Reciclado en planta en caliente.	Tratamiento Marginal - Reciclado superficial en caliente.	- Remoción y	Tratamiento	Tratamiento Marginal - Parcheo geotextiles - geomallas
Cuarteado	Tratamiento - Sobrecapa		Tratamiento Marginal - Sobrecapa estructural Fresado y sobrecapa.	Tratamiento Adecuado - Reciclado en planta en caliente.	Tratamiento Marginal - Reciclado en frio.	Tratamiento Adecuado - Remoción y reemplazo de capas. Whitetopping	- Par - Bar - Bar - Fre	cheo. cheo esado.
Exudación	Tratamiento Adecuado - Mezcla drenante.	Tratamiento Marginal - Lechada asfáltica Micro aglomerado (en frío o caliente).	Tratamiento Marginal - Sobrecapa estructural Fresado y sobrecapa.	Tratamiento Adecuado - Reciclado en planta en caliente.	Tratamiento Marginal - Reciclado superficial en caliente Reciclado en frío en el sitio.	Tratamiento Adecuado - Remoción y reemplazo de capas. Whitetopping	Tratamiento Adecuado - Bacheo Fresado.	Tratamiento Marginal - Parcheo Geomallas Microfresado.

Nota: El Tratamiento Marginal puede ser muy efectivo si el deterioro es tratado en su etapa inicial.

Fuente: Elaboración Propia, Adaptación de la Guía INVIAS (2008, p.308)

Tabla B 7. Técnicas de reparación en pavimentos con tratamiento superficial

		Técnicas de Rehabi	ilitación		
Categoría de Tratamiento	Tipo de deterioro	Restau	uración	Refuerzo	Tratamientos Previos
LES	Pérdida de agregados	Tratamiento Adecuado - Tratamiento superficial Lechada asfáltica Microaglomerado (en frío o caliente).	Tratamiento Marginal - Riego en negro Sello arena - asfalto.	Tratamiento Adecuado - Fresado y sobrecapa.	
S SUPERFICIA	Segregación	Tratamiento Adecuado - Lechada asfáltica. Microaglomerado (en frío caliente). - Sello arena - asfalto.	Tratamiento Marginal - Tratamiento Superficial Riego en negro	Tratamiento Adecuado - Fresado y sobrecapa.	Tratamiento Adecuado - Parcheo
TRATAMIENTOS SUPERFICIALES	Franjas descubiertas	Tratamiento Adecuado - Lechada asfáltica. - Microaglomerado (en frío caliente). - Sello arena - asfalto	Tratamiento Marginal - Riego en negro.		
F	Exudación		to Marginal o caliente).	Tratamiento Adecuado - Fresado y sobrecapa.	
		Técnicas de Rehabi	ilitación		
Categoría de Tratamiento	Tipo de deterioro	Restau	uración	Refuerzo	Tratamientos Previos
LECHA DA Y MICRO AGLOM ERADO S	Desprendimiento de capas	- Tratamient - Lechada	to Adecuado to superficial. a asfáltica. o (en frío o caliente).	Tratamiento Adecuado - Fresado y sobrecapa.	

	Tratamiento Adecuado	
	- Tratamiento superficial.	
Pérdida de	- Riego en negro.	Tratamiento
	- Lechada asfáltica.	Adecuado
agregados	- Microaglomerado (en frío o caliente).	- Fresado y sobrecapa.
	- Sello arena	
	- asfalto.	
	Tratamiento Adecuado	
Marcas de arrastre	- Lechada asfáltica.	
Marcas de arrastre	- Microaglomerado (en frío o caliente).	
	- Sello arena - asfalto.	
	Tratamiento Adecuado	Tratamiento
Juntas marcadas	- Lechada asfáltica.	Adecuado
	- Microaglomerado (en frío o caliente).	- Fresado y sobrecapa.

Nota: El Tratamiento Marginal puede ser muy efectivo, si el deterioro es tratado en su etapa inicial. Fuente: Elaboración Propia, Adaptación de la Guía INVIAS (2008, p309)